Displaying 21 – 40 of 43

Showing per page

Flexibility of surface groups in classical simple Lie groups

Inkang Kim, Pierre Pansu (2015)

Journal of the European Mathematical Society

We show that a surface group of high genus contained in a classical simple Lie group can be deformed to become Zariski dense, unless the Lie group is S U ( p , q ) (resp. S O * ( 2 n ) , n odd) and the surface group is maximal in some S ( U ( p , p ) × U ( q - p ) ) S U ( p , q ) (resp. S O * ( 2 n - 2 ) × S O ( 2 ) S O * ( 2 n ) ). This is a converse, for classical groups, to a rigidity result of S. Bradlow, O. García-Prada and P. Gothen.

Flots d'Anosov sur les variétés graphées au sens de Waldhausen

Thierry Barbot (1996)

Annales de l'institut Fourier

Cet article est consacré à l’étude d’une large classe de flots d’Anosov sur les variétés graphées. Nous établissons un résultat général à propos des plongements de variétés de Seifert dans les variétés de dimension 3 admettant un flot d’Anosov produit, généralisant ainsi un résultat de E. Ghys. Nous montrons que, à isotopie près, la restriction du feuilletage unidimensionnel défini par le flot à l’image de ce plongement est topologiquement conjugué à un morceau de flot géodésique privé d’un nombre...

Foliations by planes and Lie group actions

J. A. Álvarez López, J. L. Arraut, C. Biasi (2003)

Annales Polonici Mathematici

Let N be a closed orientable n-manifold, n ≥ 3, and K a compact non-empty subset. We prove that the existence of a transversally orientable codimension one foliation on N∖K with leaves homeomorphic to n - 1 , in the relative topology, implies that K must be connected. If in addition one imposes some restrictions on the homology of K, then N must be a homotopy sphere. Next we consider C² actions of a Lie group diffeomorphic to n - 1 on N and obtain our main result: if K, the set of singular points of the...

Foliations of M 3 defined by 2 -actions

Jose Luis Arraut, Marcos Craizer (1995)

Annales de l'institut Fourier

In this paper we give a geometric characterization of the 2-dimensional foliations on compact orientable 3-manifolds defined by a locally free smooth action of 2 .

Formal geometric quantization

Paul-Émile Paradan (2009)

Annales de l’institut Fourier

Let K be a compact Lie group acting in a Hamiltonian way on a symplectic manifold ( M , Ω ) which is pre-quantized by a Kostant-Souriau line bundle. We suppose here that the moment map Φ is proper so that the reduced space M μ : = Φ - 1 ( K · μ ) / K is compact for all μ . Then, we can define the “formal geometric quantization” of M as 𝒬 K - ( M ) : = μ K ^ 𝒬 ( M μ ) V μ K . The aim of this article is to study the functorial properties of the assignment ( M , K ) 𝒬 K - ( M ) .

Currently displaying 21 – 40 of 43