On for dimensional s-cobordisms, II.
Positioned eco-grammar systems (PEG systems, for short) were introduced in our previous papers. In this paper we engage in a new field of research, the hierarchy of PEG systems, namely in the hierarchy of the PEG systems according to the number of agents presented in the environment and according to the number of types of agents in the system.
In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds only for Riemannian manifolds.
We study self-homotopy equivalences and diffeomorphisms of the (n+1)-dimensional manifold X= #p(S1 x Sn) for any n ≥ 3. Then we completely determine the group of pseudo-isotopy classes of homeomorphisms of X and extend to dimension n well-known theorems due to F. Laudenbach and V. Poenaru (1972,1973), and J. M. Montesinos (1979).
We show that coefficients of residue formulas for characteristic numbers associated to a smooth toral action on a manifold can be taken in a quotient field This yields canonical identities over the integers and, reducing modulo two, residue formulas for Stiefel Whitney numbers.