Displaying 41 – 60 of 77

Showing per page

On the first homology of automorphism groups of manifolds with geometric structures

Kōjun Abe, Kazuhiko Fukui (2005)

Open Mathematics

Hermann and Thurston proved that the group of diffeomorphisms with compact support of a smooth manifold M which are isotopic to the identity is a perfect group. We consider the case where M has a geometric structure. In this paper we shall survey on the recent results of the first homology of the diffeomorphism groups which preserve a smooth G-action or a foliated structure on M. We also work in Lipschitz category.

On the homeomorphism groups of manifolds and their universal coverings

Agnieszka Kowalik, Tomasz Rybicki (2011)

Open Mathematics

Let H c(M) stand for the path connected identity component of the group of all compactly supported homeomorphisms of a manifold M. It is shown that H c(M) is perfect and simple under mild assumptions on M. Next, conjugation-invariant norms on Hc(M) are considered and the boundedness of Hc(M) and its subgroups is investigated. Finally, the structure of the universal covering group of Hc(M) is studied.

On the homotopy type of Diff ( M n ) and connected problems

Dan Burghelea (1973)

Annales de l'institut Fourier

This paper reports on some results concerning:a) The homotopy type of the group of diffeomorphisms Diff ( M n ) of a differentiable compact manifold M n (with C -topology).b) the result of the homotopy comparison of this space with the group of all homeomorphisms Homeo M n (with C o -topology). As a biproduct, one gets new facts about the homotopy groups of Diff ( D n , D n ) , Top n , Top n / O n and about the number of connected components of the space of topological and combinatorial pseudoisotopies.The results are contained in Section 1 and Section...

On the linearization theorem for proper Lie groupoids

Marius Crainic, Ivan Struchiner (2013)

Annales scientifiques de l'École Normale Supérieure

We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the fixed point case (known as Zung’s theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The passage to general orbits (Weinstein) is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the precise statements of the Linearization Theorem (there has been some confusion on this, which has propagated throughout...

On the non-existence of certain group topologies

Christian Rosendal (2005)

Fundamenta Mathematicae

Minimal Hausdorff (Baire) group topologies of certain groups of transformations naturally occurring in analysis are studied. The results obtained are subsequently applied to show that, e.g., the homeomorphism groups of the rational and of the irrational numbers carry no Polish group topology. In answer to a question of A. S. Kechris it is shown that the group of Borel automorphisms of ℝ cannot be a Polish group either.

Currently displaying 41 – 60 of 77