Previous Page 3

Displaying 41 – 48 of 48

Showing per page

Correction for the paper “ S 3 -bundles and exotic actions”

T. E. Barros (2001)

Bulletin de la Société Mathématique de France

In [R] explicit representatives for S 3 -principal bundles over S 7 are constructed, based on these constructions explicit free S 3 -actions on the total spaces are described, with quotients exotic 7 -spheres. To describe these actions a classification formula for the bundles is used. This formula is not correct. In Theorem 1 below, we correct the classification formula and in Theorem 2 we exhibit the correct indices of the exotic 7 -spheres that occur as quotients of the free S 3 -actions described above.

Crooked planes.

Drumm, Todd A., Goldman, William M. (1995)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Cyclic branched coverings and homology 3-spheres with large group actions

Bruno P. Zimmermann (2004)

Fundamenta Mathematicae

We show that, if the covering involution of a 3-manifold M occurring as the 2-fold branched covering of a knot in the 3-sphere is contained in a finite nonabelian simple group G of diffeomorphisms of M, then M is a homology 3-sphere and G isomorphic to the alternating or dodecahedral group 𝔸₅ ≅ PSL(2,5). An example of such a 3-manifold is the spherical Poincaré sphere. We construct hyperbolic analogues of the Poincaré sphere. We also give examples of hyperbolic ℤ₂-homology 3-spheres with PSL(2,q)-actions,...

Cyclic homology and equivariant theories

Jean-Luc Brylinski (1987)

Annales de l'institut Fourier

In this article, we present two possible extensions of the classical theory of equivariant cohomology. The first, due to P. Baum, R. MacPherson and the author, is called the “delocalized theory". We attempt to present it in very concrete form for a circle action on a smooth manifold. The second is the cyclic homology of the crossed- product algebra of the algebra of smooth functions on a manifold, by the convolution algebra of smooth functions on a Lie group, when such Lie group act on the manifold....

Currently displaying 41 – 48 of 48

Previous Page 3