Cohomology of Fixed Point Sets and Deformation of Algebras.
Let Fⁿ be a connected, smooth and closed n-dimensional manifold. We call Fⁿ a manifold with property when it has the following property: if is any smooth closed m-dimensional manifold with m > n and is a smooth involution whose fixed point set is Fⁿ, then m = 2n. Examples of manifolds with this property are: the real, complex and quaternionic even-dimensional projective spaces , and , and the connected sum of and any number of copies of Sⁿ × Sⁿ, where Sⁿ is the n-sphere and n is not...
We prove that the topological φ-category of a pair (M,N) of topological manifolds is infinite if the algebraic φ-category of the pair of fundamental groups (π₁(M),π₁(N)) is infinite. Some immediate consequences of this fact are also pointed out.
In this paper we generalize Wiener’s characterization of continuous measures to compact homogenous manifolds. In particular, we give necessary and sufficient conditions on probability measures on compact semisimple Lie groups and nilmanifolds to be continuous. The methods use only simple properties of heat kernels.