Displaying 621 – 640 of 721

Showing per page

Théorie de jauge et symétries des fibrés

D. Brandt, Jean-Claude Hausmann (1993)

Annales de l'institut Fourier

Soit ξ un G -fibré principal différentiable sur une variété M ( G un groupe de Lie compact). Étant donné une action d’un groupe de Lie compact Γ sur M , on se pose la question de savoir si elle provient d’une action sur le fibré ξ . L’originalité de ce travail est de relier ce problème à l’existence de points fixes pour les actions de Γ que l’on induit naturellement sur divers espaces de modules de G -connexions sur ξ .

Topological classification of multiaxial U ( n ) -actions (with an appendix by Jared Bass)

Sylvain Cappell, Shmuel Weinberger, Min Yan (2015)

Journal of the European Mathematical Society

This paper begins the classification of topological actions on manifolds by compact, connected, Lie groups beyond the circle group. It treats multiaxial topological actions of unitary and symplectic groups without the dimension restrictions used in earlier works by M. Davis and W. C. Hsiang on differentiable actions. The general results are applied to give detailed calculations for topological actions homotopically modeled on standard multiaxial representation spheres. In the present topological...

Topological conjugacy of locally free 𝐑 n - 1 actions on n -manifolds

David C. Tischler, Rosamond W. Tischler (1974)

Annales de l'institut Fourier

For actions as in the title we associate a collection of rotation numbers. If one of them is sufficiently irrational then the action is conjugate (as an action) to either a linear action on a torus or to an action on a principal T k bundle over T 2 with T k × R 1 orbits.

Topological conjugation classes of tightly transitive subgroups of Homeo₊(ℝ)

Enhui Shi, Lizhen Zhou (2016)

Colloquium Mathematicae

Let ℝ be the real line and let Homeo₊(ℝ) be the orientation preserving homeomorphism group of ℝ. Then a subgroup G of Homeo₊(ℝ) is called tightly transitive if there is some point x ∈ X such that the orbit Gx is dense in X and no subgroups H of G with |G:H| = ∞ have this property. In this paper, for each integer n > 1, we determine all the topological conjugation classes of tightly transitive subgroups G of Homeo₊(ℝ) which are isomorphic to ℤⁿ and have countably many nontransitive points.

Topological transitivity of solvable group actions on the line ℝ

Suhua Wang, Enhui Shi, Lizhen Zhou, Grant Cairns (2009)

Colloquium Mathematicae

Let ϕ:G → Homeo₊(ℝ) be an orientation preserving action of a discrete solvable group G on ℝ. In this paper, the topological transitivity of ϕ is investigated. In particular, the relations between the dynamical complexity of G and the algebraic structure of G are considered.

Transitive riemannian isometry groups with nilpotent radicals

C. Gordon (1981)

Annales de l'institut Fourier

Given that a connected Lie group G with nilpotent radical acts transitively by isometries on a connected Riemannian manifold M , the structure of the full connected isometry group A of M and the imbedding of G in A are described. In particular, if G equals its derived subgroup and its Levi factors are of noncompact type, then G is normal in A . In the special case of a simply transitive action of G on M , a transitive normal subgroup G ' of A is constructed with dim G ' = dim G and a sufficient condition is given...

Currently displaying 621 – 640 of 721