Propagation des ondes dans les variétés à coins
Gilles Lebeau (1997)
Annales scientifiques de l'École Normale Supérieure
Garnir, H.G. (1982)
Portugaliae mathematica
Laubin, P. (1982)
Portugaliae mathematica
A. Grigis (1979/1980)
Séminaire Équations aux dérivées partielles (Polytechnique)
Jean-Michel Bony (1975)
Journées équations aux dérivées partielles
B. Lascar (1985/1986)
Séminaire Équations aux dérivées partielles (Polytechnique)
A. Grigis (1982)
Annales scientifiques de l'École Normale Supérieure
B. Lascar, R. Lascar (1992)
Publications mathématiques et informatique de Rennes
Paul Godin (1979)
Annales de l'institut Fourier
Sur une variété analytique paracompacte de dimension 2, on considère un opérateur différentiel à symbole principal analytique vérifiant la condition de Nirenberg et Treves. En ajoutant une nouvelle variable et en utilisant des estimations a priori de type Carleman, on montre qu’il y a propagation des singularités pour , dans , le long des feuilles intégrales du système différentiel engendré par les champs hamiltoniens de Re et Im.
A. Grigis (1982)
Annales scientifiques de l'École Normale Supérieure
André Martinez, Shu Nakamura, Vania Sordoni (2007/2008)
Séminaire Équations aux dérivées partielles
Pierre Schapira (1987)
Journées équations aux dérivées partielles
Christopher D. Sogge (1991)
Inventiones mathematicae
Johannes Sjöstrand (1976)
Annales de l'institut Fourier
Let be a classical pseudodifferential operator of order on a paracompact manifold . Let be the principal symbol and assume that is an involutive sub-manifold of , satisfying a certain transversality condition. We assume that vanishes exactly to order on and that the derivatives of order satisfy a certain condition, inspired from the Calderòn uniqueness theorem (usually empty when ). Suppose that a Levi condition is valid for the lower order symbols. If , , then is a union...
András Vasy (2004/2005)
Séminaire Équations aux dérivées partielles
In this talk we describe the propagation of and Sobolev singularities for the wave equation on manifolds with corners equipped with a Riemannian metric . That is, for , , and solving with homogeneous Dirichlet or Neumann boundary conditions, we show that is a union of maximally extended generalized broken bicharacteristics. This result is a counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary,...
András Vasy (1999)
Journées équations aux dérivées partielles
In these lecture notes we describe the propagation of singularities of tempered distributional solutions of , where is a many-body hamiltonian , , , and is not a threshold of , under the assumption that the inter-particle (e.g. two-body) interactions are real-valued polyhomogeneous symbols of order (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...
Kiril Datchev, András Vasy (2012)
Annales de l’institut Fourier
Motivated by the study of resolvent estimates in the presence of trapping, we prove a semiclassical propagation theorem in a neighborhood of a compact invariant subset of the bicharacteristic flow which is isolated in a suitable sense. Examples include a global trapped set and a single isolated periodic trajectory. This is applied to obtain microlocal resolvent estimates with no loss compared to the nontrapping setting.
Nguyen Tien Zung (2006)
Annales scientifiques de l'École Normale Supérieure
J. R. Brown (2007)
Mathematica Bohemica
We consider almost-complex structures on whose total Chern classes differ from that of the standard (integrable) almost-complex structure. E. Thomas established the existence of many such structures. We show that if there exists an “exotic” integrable almost-complex structures, then the resulting complex manifold would have specific Hodge numbers which do not vanish. We also give a necessary condition for the nondegeneration of the Frölicher spectral sequence at the second level.
Korobkov, M.V. (2009)
Sibirskij Matematicheskij Zhurnal