Displaying 61 – 80 of 91

Showing per page

Pierrot's theorem for singular Riemannian foliations.

Robert A. Wolak (1994)

Publicacions Matemàtiques

Let F be a singular Riemannian foliation on a compact connected Riemannian manifold M. We demonstrate that global foliated vector fields generate a distribution tangent to the strata defined by the closures of leaves of F and which, in each stratum, is transverse to these closures of leaves.

Singularities and normal forms of generic 2-distributions on 3-manifolds

B. Jakubczyk, M. Zhitomirskiĭ (1995)

Studia Mathematica

We give a complete classification of germs of generic 2-distributions on 3-manifolds. By a 2-distribution we mean either a module generated by two vector fields (at singular points its dimension decreases) or a Pfaff equation, i.e. a module generated by a differential 1-form (at singular points the dimension of its kernel increases).

Split octonions and generic rank two distributions in dimension five

Katja Sagerschnig (2006)

Archivum Mathematicum

In his famous five variables paper Elie Cartan showed that one can canonically associate to a generic rank 2 distribution on a 5 dimensional manifold a Cartan geometry modeled on the homogeneous space G ˜ 2 / P , where P is one of the maximal parabolic subgroups of the exceptional Lie group G ˜ 2 . In this article, we use the algebra of split octonions to give an explicit global description of the distribution corresponding to the homogeneous model.

Stability of certain Engel-like distributions

Aritra Bhowmick (2021)

Czechoslovak Mathematical Journal

We introduce a higher dimensional analogue of the Engel structure, motivated by the Cartan prolongation of contact manifolds. We study the stability of such structure, generalizing the Gray-type stability results for Engel manifolds. We also derive local normal forms defining such a distribution.

Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity

Andrei A. Agrachev, Andrei V. Sarychev (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study sub-Riemannian (Carnot-Caratheodory) metrics defined by noninvolutive distributions on real-analytic Riemannian manifolds. We establish a connection between regularity properties of these metrics and the lack of length minimizing abnormal geodesics. Utilizing the results of the previous study of abnormal length minimizers accomplished by the authors in [Annales IHP. Analyse nonlinéaire 13, p. 635-690] we describe in this paper two classes of the germs of distributions (called 2-generating...

The almost Einstein operator for ( 2 , 3 , 5 ) distributions

Katja Sagerschnig, Travis Willse (2017)

Archivum Mathematicum

For the geometry of oriented ( 2 , 3 , 5 ) distributions ( M , ) , which correspond to regular, normal parabolic geometries of type ( G 2 , P ) for a particular parabolic subgroup P < G 2 , we develop the corresponding tractor calculus and use it to analyze the first BGG operator Θ 0 associated to the 7 -dimensional irreducible representation of G 2 . We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator...

Currently displaying 61 – 80 of 91