Distributions invariant under compact Lie groups
On étudie les distributions involutives, i.e. les modules de champs de vecteurs stables par le crochet de Lie, au voisinage d’un point singulier. Après s’être ramené au cas purement singulier, c’est-à-dire où tous les éléments de s’annulent en 0, des hypothèses génériques portant sur la partie linéaire de nous permettent d’obtenir la linéarisation.
We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples...
A compact K¨ahlerian manifoldM of dimension n satisfies hp,q(M) = hq,p(M) for each p, q.However, a compact complex manifold does not satisfy the equations in general. In this paper, we consider duality of Hodge numbers of compact complex nilmanifolds.
Necessary and sufficient conditions for local embeddability of abstract structures are expressed in terms of the commutation of the vector fields with a complex Lie algebra. These results extend to more general systems.