Displaying 221 – 240 of 1152

Showing per page

Distributions involutives singulières

Dominique Cerveau (1979)

Annales de l'institut Fourier

On étudie les distributions involutives, i.e. les modules D de champs de vecteurs stables par le crochet de Lie, au voisinage d’un point 0 singulier. Après s’être ramené au cas purement singulier, c’est-à-dire où tous les éléments de D s’annulent en 0, des hypothèses génériques portant sur la partie linéaire de D nous permettent d’obtenir la linéarisation.

Divergence operators and odd Poisson brackets

Yvette Kosmann-Schwarzbach, Juan Monterde (2002)

Annales de l’institut Fourier

We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, Δ , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples...

Double linear connections

Alena Vanžurová (1991)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Double vector spaces

Alena Vanžurová (1987)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Duality of Hodge numbers of compact complex nilmanifolds

Takumi Yamada (2015)

Complex Manifolds

A compact K¨ahlerian manifoldM of dimension n satisfies hp,q(M) = hq,p(M) for each p, q.However, a compact complex manifold does not satisfy the equations in general. In this paper, we consider duality of Hodge numbers of compact complex nilmanifolds.

Currently displaying 221 – 240 of 1152