Cohomologie relative de formes non exceptionnelles
This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.
Nous introduisons de nouvelles régularités de Kuo-Verdier et montrons que pour une stratification
It is proved that the normal bundle of a distribution on a riemannian manifold admits a conformal curvature if and only if is a conformal foliation. Then is conformally flat if and only if vanishes. Also, the Pontrjagin classes of can be expressed in terms of .
For odd-dimensional Poincaré–Einstein manifolds , we study the set of harmonic -forms (for ) which are (with ) on the conformal compactification of . This set is infinite-dimensional for small but it becomes finite-dimensional if is large enough, and in one-to-one correspondence with the direct sum of the relative cohomology and the kernel of the Branson–Gover [3] differential operators on the conformal infinity . We also relate the set of forms in the kernel of to the conformal...