Displaying 41 – 60 of 273

Showing per page

Curves and surfaces in hyperbolic space

Shyuichi Izumiya, Donghe Pei, Masatomo Takahashi (2004)

Banach Center Publications

In the first part (Sections 2 and 3), we give a survey of the recent results on application of singularity theory for curves and surfaces in hyperbolic space. After that we define the hyperbolic canal surface of a hyperbolic space curve and apply the results of the first part to get some geometric relations between the hyperbolic canal surface and the centre curve.

Density of smooth maps for fractional Sobolev spaces W s , p into simply connected manifolds when s 1

Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen (2013)

Confluentes Mathematici

Given a compact manifold N n ν and real numbers s 1 and 1 p < , we prove that the class C ( Q ¯ m ; N n ) of smooth maps on the cube with values into N n is strongly dense in the fractional Sobolev space W s , p ( Q m ; N n ) when N n is s p simply connected. For s p integer, we prove weak sequential density of C ( Q ¯ m ; N n ) when N n is s p - 1 simply connected. The proofs are based on the existence of a retraction of ν onto N n except for a small subset of N n and on a pointwise estimate of fractional derivatives of composition of maps in W s , p W 1 , s p .

Embedding of Hilbert manifolds with smooth boundary into semispaces of Hilbert spaces

J. Margalef-Roig, Enrique Outerelo-Domínguez (1994)

Archivum Mathematicum

In this paper we prove the existence of a closed neat embedding of a Hausdorff paracompact Hilbert manifold with smooth boundary into H × [ 0 , + ) , where H is a Hilbert space, such that the normal space in each point of a certain neighbourhood of the boundary is contained in H × { 0 } . Then, we give a neccesary and sufficient condition that a Hausdorff paracompact topological space could admit a differentiable structure of class with smooth boundary.

Currently displaying 41 – 60 of 273