Critical sets of 2-dimensional compact manifolds.
In the first part (Sections 2 and 3), we give a survey of the recent results on application of singularity theory for curves and surfaces in hyperbolic space. After that we define the hyperbolic canal surface of a hyperbolic space curve and apply the results of the first part to get some geometric relations between the hyperbolic canal surface and the centre curve.
On donne une condition suffisante explicite et générique pour qu’une forme de Pfaff à deux variables complexes ait ses feuilles denses tant localement que globalement.
Given a compact manifold and real numbers and , we prove that the class of smooth maps on the cube with values into is strongly dense in the fractional Sobolev space when is simply connected. For integer, we prove weak sequential density of when is simply connected. The proofs are based on the existence of a retraction of onto except for a small subset of and on a pointwise estimate of fractional derivatives of composition of maps in .
In this paper we prove the existence of a closed neat embedding of a Hausdorff paracompact Hilbert manifold with smooth boundary into , where is a Hilbert space, such that the normal space in each point of a certain neighbourhood of the boundary is contained in . Then, we give a neccesary and sufficient condition that a Hausdorff paracompact topological space could admit a differentiable structure of class with smooth boundary.