Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces
Smooth bundles, whose fibres are distribution spaces, are introduced according to the notion of smoothness due to Frölicher. Some fundamental notions of differential geometry, such as tangent and jet spaces, Frölicher-Nijenhuis bracket, connections and curvature, are suitably generalized. It is also shown that a classical connection on a finite-dimensional bundle naturally determines a connection on an associated distributional bundle.
The paper contains a generic condition permitting the linearization in class , , of germs of singular infinitesimal -actions on and of singular holomorphic...
The purpose of this paper is to give an illustration of results on integrability of distributions and orbits of vector fields on Banach manifolds obtained in [5] and [4]. Using arguments and results of these papers, in the context of a separable Hilbert space, we give a generalization of a Theorem of accessibility contained in [3] and [6] for articulated arms and snakes in a finite dimensional Hilbert space.
The classical singularity theory deals with singularities of various mathematical objects: curves and surfaces, mappings, solutions of differential equations, etc. In particular, singularity theory treats the tasks of recognition, description and classification of singularities in each of these cases. In many applications of singularity theory it is important to sharpen its basic results, making them "quantitative", i.e. providing explicit and effectively computable estimates for all the important...
We discuss variational problems for the -Dirichlet integral, non integer, for maps between manifolds, illustrating the role played by the geometry of the target manifold in their weak formulation.
Let X = (X,d) be a metric space and let the product space X × ℝ be endowed with the metric ϱ ((x,t),(x’,t’)) = maxd(x,x’), |t - t’|. We denote by the space of bounded upper semicontinuous multi-valued functions φ : X → ℝ such that each φ(x) is a closed interval. We identify with its graph which is a closed subset of X × ℝ. The space admits the Hausdorff metric induced by ϱ. It is proved that if X = (X,d) is uniformly locally connected, non-compact and complete, then is homeomorphic to a...
We prove a uniform lower bound for the difference λ₂ - λ₁ between the first two eigenvalues of the fractional Schrödinger operator , α ∈ (1,2), with a symmetric single-well potential V in a bounded interval (a,b), which is related to the Feynman-Kac semigroup of the symmetric α-stable process killed upon leaving (a,b). “Uniform” means that the positive constant appearing in our estimate is independent of the potential V. In the general case of α ∈ (0,2), we also find a uniform lower bound for...