Spectral properties of the adjoint operator and applications.
We define translation surfaces and, on these, the Laplace operator that is associated with the Euclidean (singular) metric. This Laplace operator is not essentially self-adjoint and we recall how self-adjoint extensions are chosen. There are essentially two geometrical self-adjoint extensions and we show that they actually share the same spectrum
In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space for .
P. Bérard et D. Meyer ont démontré une inégalité du type Faber-Krahn pour les domaines d'une variété compacte à courbure de Ricci positive. Nous démontrons des résultats de stabilité associés à cette inégalité.
Nous caractérisons les couples de fonctions différentiables , définies sur une variété compacte de dimension , qui sont simultanément stables en ce sens que, pour tout couple assez voisin, il existe un difféomorphisme de et deux difféomorphismes et de tels que et échangent et alors que et échangent et . L’outil essentiel est une technique de résolution des équations du type où les inconnues et sont des fonctions de classe .
We introduce and investigate a set-valued analogue of classical Langevin equation on a Riemannian manifold that may arise as a description of some physical processes (e.g., the motion of the physical Brownian particle) on non-linear configuration space under discontinuous forces or forces with control. Several existence theorems are proved.
In the paper we construct some stratifications of the space of monic polynomials in real and complex cases. These stratifications depend on properties of roots of the polynomials on some given semialgebraic subset of R or C. We prove differential triviality of these stratifications. In the real case the proof is based on properties of the action of the group of interval exchange transformations on the set of all monic polynomials of some given degree. Finally we compare stratifications corresponding...
Given a compact manifold , an integer and an exponent , we prove that the class of smooth maps on the cube with values into is dense with respect to the strong topology in the Sobolev space when the homotopy group of order is trivial. We also prove density of maps that are smooth except for a set of dimension , without any restriction on the homotopy group of .