On the existence and stability of unfoldings of equivariant two-parameter bifurcation problems.
A Goursat structure on a manifold of dimension is a rank two distribution such that dim , for , where denote the elements of the derived flag of , defined by and . Goursat structures appeared first in the work of von Weber and Cartan, who have shown that on an open and dense subset they can be converted into the so-called Goursat normal form. Later, Goursat structures have been studied by Kumpera and Ruiz. In the paper, we introduce a new local invariant for Goursat structures, called...
A Goursat structure on a manifold of dimension n is a rank two distribution Ɗ such that dim Ɗ(i) = i + 2, for 0 ≤ i ≤ n-2, where Ɗ(i) denote the elements of the derived flag of Ɗ, defined by Ɗ(0) = Ɗ and Ɗ(i+1) = Ɗ(i) + [Ɗ(i),Ɗ(i)] . Goursat structures appeared first in the work of von Weber and Cartan, who have shown that on an open and dense subset they can be converted into the so-called Goursat normal form. Later, Goursat structures have been studied by Kumpera and Ruiz. In the paper, we introduce...
The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the -dimensional torus, its identity component is a simple group. For fibered manifolds, for manifolds admitting special semi-free actions and for 2- or 3-dimensional manifolds with nontrivial actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.
In the present work, using a formula describing all scalar spectral functions of a Carleman operator of defect indices in the Hilbert space that we obtained in a previous paper, we derive certain results concerning the localization of the spectrum of quasi-selfadjoint extensions of the operator .
Let be a compact Riemannian manifold and an elliptic, formally self-adjoint, conformally covariant operator of order acting on smooth sections of a bundle over . We prove that if has no rigid eigenspaces (see Definition 2.2), the set of functions for which has only simple non-zero eigenvalues is a residual set in . As a consequence we prove that if has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the -topology....