Displaying 641 – 660 of 703

Showing per page

Undirected and directed graphs with near polynomial growth

V.I. Trofimov (2003)

Discussiones Mathematicae Graph Theory

The growth function of a graph with respect to a vertex is near polynomial if there exists a polynomial bounding it above for infinitely many positive integers. In the paper vertex-symmetric undirected graphs and vertex-symmetric directed graphs with coinciding in- and out-degrees are described in the case their growth functions are near polynomial.

Unfoldings of foliations with multiform first integrals

Tatsuo Suwa (1983)

Annales de l'institut Fourier

Let F = ( ω ) be a codim 1 local foliation generated by a germ ω of the form ω = f 1 ... f p i = 1 p λ i d f i f i for some complex numbers λ i and germs f i of holomorphic functions at the origin in C n . We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of F . Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for F is equivalent to the unfolding theory for the multiform function...

Variations of additive functions

Zoltán Buczolich, Washek Frank Pfeffer (1997)

Czechoslovak Mathematical Journal

We study the relationship between derivates and variational measures of additive functions defined on families of figures or bounded sets of finite perimeter. Our results, valid in all dimensions, include a generalization of Ward’s theorem, a necessary and sufficient condition for derivability, and full descriptive definitions of certain conditionally convergent integrals.

Weakly coercive mappings sharing a value

J. M. Soriano (2011)

Czechoslovak Mathematical Journal

Some sufficient conditions are provided that guarantee that the difference of a compact mapping and a proper mapping defined between any two Banach spaces over 𝕂 has at least one zero. When conditions are strengthened, this difference has at most a finite number of zeros throughout the entire space. The proof of the result is constructive and is based upon a continuation method.

Currently displaying 641 – 660 of 703