Unconditionally converging holomorphic mappings between Banach spaces
The growth function of a graph with respect to a vertex is near polynomial if there exists a polynomial bounding it above for infinitely many positive integers. In the paper vertex-symmetric undirected graphs and vertex-symmetric directed graphs with coinciding in- and out-degrees are described in the case their growth functions are near polynomial.
Let be a codim 1 local foliation generated by a germ of the form for some complex numbers and germs of holomorphic functions at the origin in . We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of . Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for is equivalent to the unfolding theory for the multiform function...
We study vanishing theorems for Killing vector fields on complete stable hypersurfaces in a hyperbolic space . We derive vanishing theorems for Killing vector fields with bounded L²-norm in terms of the bottom of the spectrum of the Laplace operator.
We study the relationship between derivates and variational measures of additive functions defined on families of figures or bounded sets of finite perimeter. Our results, valid in all dimensions, include a generalization of Ward’s theorem, a necessary and sufficient condition for derivability, and full descriptive definitions of certain conditionally convergent integrals.
Some sufficient conditions are provided that guarantee that the difference of a compact mapping and a proper mapping defined between any two Banach spaces over has at least one zero. When conditions are strengthened, this difference has at most a finite number of zeros throughout the entire space. The proof of the result is constructive and is based upon a continuation method.