The L2-Structure of Moduli spaces of Einstein Metrics on 4-Manifolds.
We construct an infinite-dimensional real analytic manifold structure on the space of real analytic mappings from a compact manifold to a locally convex manifold. Here a map is defined to be real analytic if it extends to a holomorphic map on some neighbourhood of the complexification of its domain. As is well known, the construction turns the group of real analytic diffeomorphisms into a smooth locally convex Lie group. We prove that this group is regular in the sense of Milnor. ...
The geometric description of Yang–Mills theories and their configuration space is reviewed. The presence of singularities in M is explained and some of their properties are described. The singularity structure is analysed in detail for structure group SU(2). This review is based on [28].
Soit un -fibré principal différentiable sur une variété ( un groupe de Lie compact). Étant donné une action d’un groupe de Lie compact sur , on se pose la question de savoir si elle provient d’une action sur le fibré . L’originalité de ce travail est de relier ce problème à l’existence de points fixes pour les actions de que l’on induit naturellement sur divers espaces de modules de -connexions sur .