Page 1 Next

Displaying 1 – 20 of 86

Showing per page

Editorial

Olga Krupková (2010)

Communications in Mathematics

Editorials' note

Miroslav Fiedler, Pankaj Jain, Lars-Erik Persson (2009)

Czechoslovak Mathematical Journal

Eigenvalues of the p -Laplacian in 𝐑 N with indefinite weight

Yin Xi Huang (1995)

Commentationes Mathematicae Universitatis Carolinae

We consider the nonlinear eigenvalue problem - div ( | u | p - 2 u ) = λ g ( x ) | u | p - 2 u in 𝐑 N with p > 1 . A condition on indefinite weight function g is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in W 1 , p ( 𝐑 N ) . A nonexistence result is also given for the case p N .

Energy and Morse index of solutions of Yamabe type problems on thin annuli

Mohammed Ben Ayed, Khalil El Mehdi, Mohameden Ould Ahmedou, Filomena Pacella (2005)

Journal of the European Mathematical Society

We consider the Yamabe type family of problems ( P ε ) : Δ u ε = u ε ( n + 2 ) / ( n 2 ) , u ε > 0 in A ε , u ε = 0 on A ε , where A ε is an annulus-shaped domain of n , n 3 , which becomes thinner as ε 0 . We show that for every solution u ε , the energy A ε | u | 2 as well as the Morse index tend to infinity as ε 0 . This is proved through a fine blow up analysis of appropriate scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some elliptic problem on n , a half-space or an infinite strip. Our argument also involves a Liouville type theorem...

Energy gaps for exponential Yang-Mills fields

Zhen Rong Zhou (2018)

Archivum Mathematicum

In this paper, some inequalities of Simons type for exponential Yang-Mills fields over compact Riemannian manifolds are established, and the energy gaps are obtained.

Energy quantization and mean value inequalities for nonlinear boundary value problems

Katrin Wehrheim (2005)

Journal of the European Mathematical Society

We give a unified statement and proof of a class of well known mean value inequalities for nonnegative functions with a nonlinear bound on the Laplacian. We generalize these to domains with boundary, requiring a (possibly nonlinear) bound on the normal derivative at the boundary. These inequalities give rise to an energy quantization principle for sequences of solutions of boundary value problems that have bounded energy and whose energy densities satisfy nonlinear bounds on the Laplacian and normal...

Currently displaying 1 – 20 of 86

Page 1 Next