Editorial
We consider the nonlinear eigenvalue problem in with . A condition on indefinite weight function is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in . A nonexistence result is also given for the case .
We consider the Yamabe type family of problems , in , on , where is an annulus-shaped domain of , , which becomes thinner as . We show that for every solution , the energy as well as the Morse index tend to infinity as . This is proved through a fine blow up analysis of appropriate scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some elliptic problem on , a half-space or an infinite strip. Our argument also involves a Liouville type theorem...
In this paper, some inequalities of Simons type for exponential Yang-Mills fields over compact Riemannian manifolds are established, and the energy gaps are obtained.
We give a unified statement and proof of a class of well known mean value inequalities for nonnegative functions with a nonlinear bound on the Laplacian. We generalize these to domains with boundary, requiring a (possibly nonlinear) bound on the normal derivative at the boundary. These inequalities give rise to an energy quantization principle for sequences of solutions of boundary value problems that have bounded energy and whose energy densities satisfy nonlinear bounds on the Laplacian and normal...
Equivalence and zero sets of certain maps on infinite dimensional spaces are studied using an approach similar to the deformation lemma from the singularity theory.