Displaying 1021 – 1040 of 1170

Showing per page

The evolution of the scalar curvature of a surface to a prescribed function

Paul Baird, Ali Fardoun, Rachid Regbaoui (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We investigate the gradient flow associated to the prescribed scalar curvature problem on compact riemannian surfaces. We prove the global existence and the convergence at infinity of this flow under sufficient conditions on the prescribed function, which we suppose just continuous. In particular, this gives a uniform approach to solve the prescribed scalar curvature problem for general compact surfaces.

The existence of positive solution to some asymptotically linear elliptic equations in exterior domains.

Gongbao Li, Gao-Feng Zheng (2006)

Revista Matemática Iberoamericana

In this paper, we are concerned with the asymptotically linear elliptic problem -Δu + λ0u = f(u), u ∈ H01(Ω) in an exterior domain Ω = RnO (N ≥ 3) with O a smooth bounded and star-shaped open set, and limt→+∞ f(t)/t = l, 0 < l < +∞. Using a precise deformation lemma and algebraic topology argument, we prove under our assumptions that the problem possesses at least one positive solution.

The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions

Ursula Ludwig (2010)

Annales de l’institut Fourier

In a previous note the author gave a generalisation of Witten’s proof of the Morse inequalities to the model of a complex singular curve X and a stratified Morse function f . In this note a geometric interpretation of the complex of eigenforms of the Witten Laplacian corresponding to small eigenvalues is provided in terms of an appropriate subcomplex of the complex of unstable cells of critical points of f .

The gradient flow of Higgs pairs

Jiayu Li, Xi Zhang (2011)

Journal of the European Mathematical Society

We consider the gradient flow of the Yang–Mills–Higgs functional of Higgs pairs on a Hermitian vector bundle ( E , H 0 ) over a Kähler surface ( M , ω ) , and study the asymptotic behavior of the heat flow for Higgs pairs at infinity. The main result is that the gradient flow with initial condition ( A 0 , φ 0 ) converges, in an appropriate sense which takes into account bubbling phenomena, to a critical point ( A , φ ) of this functional. We also prove that the limiting Higgs pair ( A , φ ) can be extended smoothly to a vector bundle E over...

Currently displaying 1021 – 1040 of 1170