Displaying 21 – 40 of 157

Showing per page

Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators

S. Dekel, G. Kerkyacharian, G. Kyriazis, P. Petrushev (2014)

Studia Mathematica

A small perturbation method is developed and employed to construct frames with compactly supported elements of small shrinking support for Besov and Triebel-Lizorkin spaces in the general setting of a doubling metric measure space in the presence of a nonnegative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows one, in particular, to construct compactly supported frames for Besov and Triebel-Lizorkin spaces on the sphere, on the interval with...

Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings

Satoshi Ishiwata (2007)

Annales mathématiques Blaise Pascal

We obtain another proof of a Gaussian upper estimate for a gradient of the heat kernel on cofinite covering graphs whose covering transformation group has a polynomial volume growth. It is proved by using the temporal regularity of the discrete heat kernel obtained by Blunck [2] and Christ [3] along with the arguments of Dungey [7] on covering manifolds.

Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form

Mohamed Saad Bouh Elemine Vall, Ahmed Ahmed, Abdelfattah Touzani, Abdelmoujib Benkirane (2018)

Mathematica Bohemica

We prove the existence of solutions to nonlinear parabolic problems of the following type: b ( u ) t + A ( u ) = f + div ( Θ ( x ; t ; u ) ) in Q , u ( x ; t ) = 0 on Ω × [ 0 ; T ] , b ( u ) ( t = 0 ) = b ( u 0 ) on Ω , where b : is a strictly increasing function of class 𝒞 1 , the term A ( u ) = - div ( a ( x , t , u , u ) ) is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, Θ : Ω × [ 0 ; T ] × is a Carathéodory, noncoercive function which satisfies the following condition: sup | s | k | Θ ( · , · , s ) | E ψ ( Q ) for all k > 0 , where ψ is the Musielak complementary function of Θ , and the second term f belongs to L 1 ( Q ) .

Evolution of convex entire graphs by curvature flows

Roberta Alessandroni, Carlo Sinestrari (2015)

Geometric Flows

We consider the evolution of an entire convex graph in euclidean space with speed given by a symmetric function of the principal curvatures. Under suitable assumptions on the speed and on the initial data, we prove that the solution exists for all times and it remains a graph. In addition, after appropriate rescaling, it converges to a homothetically expanding solution of the flow. In this way, we extend to a class of nonlinear speeds the well known results of Ecker and Huisken for the mean curvature...

Currently displaying 21 – 40 of 157