Previous Page 2

Displaying 21 – 36 of 36

Showing per page

A spectral estimate for the Dirac operator on Riemannian flows

Nicolas Ginoux, Georges Habib (2010)

Open Mathematics

We give a new upper bound for the smallest eigenvalues of the Dirac operator on a Riemannian flow carrying transversal Killing spinors. We derive an estimate on both Sasakian and 3-dimensional manifolds, and partially classify those satisfying the limiting case. Finally, we compare our estimate with a lower bound in terms of a natural tensor depending on the eigenspinor.

Applications of the ‘Ham Sandwich Theorem’ to Eigenvalues of the Laplacian

Kei Funano (2016)

Analysis and Geometry in Metric Spaces

We apply Gromov’s ham sandwich method to get: (1) domain monotonicity (up to a multiplicative constant factor); (2) reverse domain monotonicity (up to a multiplicative constant factor); and (3) universal inequalities for Neumann eigenvalues of the Laplacian on bounded convex domains in Euclidean space.

Currently displaying 21 – 36 of 36

Previous Page 2