The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The Laplacian of a compact Riemannian manifold is called maximally degenerate if its eigenvalue multiplicity function is of maximal growth among metrics of the same dimension and volume. Canonical spheres and CROSSes are MD, and one asks if they are the only examples. We show that a MD metric must be at least a Zoll metric with just one distinct eigenvalue in each cluster, and hence with all band invariants equal to zero. The principal band invariant is then calculated in terms of geodesic...
On a two-dimensional compact real analytic Riemannian manifold we estimate the volume of the set on which the eigenfunction of the Laplace-Beltrami operator is positive.On an -dimensional compact smooth Riemannian manifold, we estimate the relation between supremum and infimum of an eigenfunction of the Laplace operator.
On établit une minoration pour la première valeur propre non nulle du problème de Neumann sur les variétés riemanniennes à bord; la nécessité des bornes géométriques utilisées est illustrée par une série d’exemples. Cette approche prolonge celle de Li-Yau, qui était limitée à l’étude du cas où le bord est convexe.
Soit une variété hyperbolique compacte de dimension 3, de diamètre et de volume . Si on note la -ième valeur propre du laplacien de Hodge-de Rham agissant sur les 1-formes coexactes de , on montre que et , où est une constante ne dépendant que de , et est le nombre de composantes connexes de la partie mince de . En outre, on montre que pour toute 3-variété hyperbolique de volume fini avec cusps, il existe une suite de remplissages compacts de , de diamètre telle que et .
We prove two explicit bounds for the multiplicities of Steklov eigenvalues on compact surfaces with boundary. One of the bounds depends only on the genus of a surface and the index of an eigenvalue, while the other depends as well on the number of boundary components. We also show that on any given Riemannian surface with smooth boundary the multiplicities of Steklov eigenvalues are uniformly bounded in .
Currently displaying 1 –
13 of
13