The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
On étudie le comportement des premières valeurs propres du laplacien agissant sur les formes différentielles lors d’un effondrement adiabatique d’un flot riemannien sur une variété compacte . Le nombre de petites valeurs propres peut alors se calculer en fonction de la cohomologie basique de , et on donne des critères spectraux pour l’annulation des classes d’Álvarez et d’Euler du flot. En outre, on définit un invariant de nature diophantienne du flot qui est lié au comportement asymptotique...
À courbure et diamètre bornés, les valeurs propres non nulles du laplacien de Hodge-de Rham agissant sur les formes différentielles d’une variété compacte ne sont pas uniformément minorées comme c’est le cas pour les fonctions, et si l’une d’elle tend vers zéro alors le volume de la variété tend aussi vers zéro, c’est-à-dire qu’elle s’effondre. On présente ici les résultats obtenus ces dernières années concernant le problème réciproque, à savoir déterminer le comportement asymptotique des premières...
For compact hypersurfaces with constant mean curvature in the unit sphere, we give a comparison theorem between eigenvalues of the stability operator and that of the Hodge Laplacian on 1-forms. Furthermore, we also establish a comparison theorem between eigenvalues of the stability operator and that of the rough Laplacian.
Currently displaying 1 –
20 of
28