Displaying 181 – 200 of 203

Showing per page

Symétries spectrales des fonctions zêtas

Frédéric Paugam (2009)

Journal de Théorie des Nombres de Bordeaux

On définit, en réponse à une question de Sarnak dans sa lettre a Bombieri [Sar01], un accouplement symplectique sur l’interprétation spectrale (due à Connes et Meyer) des zéros de la fonction zêta. Cet accouplement donne une formulation purement spectrale de la démonstration de l’équation fonctionnelle due à Tate, Weil et Iwasawa, qui, dans le cas d’une courbe sur un corps fini, correspond à la démonstration géométrique usuelle par utilisation de l’accouplement de dualité de Poincaré Frobenius-équivariant...

Symmetries in finite order variational sequences

Mauro Francaviglia, Marcella Palese, Raffaele Vitolo (2002)

Czechoslovak Mathematical Journal

We refer to Krupka’s variational sequence, i.e. the quotient of the de Rham sequence on a finite order jet space with respect to a ‘variationally trivial’ subsequence. Among the morphisms of the variational sequence there are the Euler-Lagrange operator and the Helmholtz operator. In this note we show that the Lie derivative operator passes to the quotient in the variational sequence. Then we define the variational Lie derivative as an operator on the sheaves of the variational sequence. Explicit...

Symmetries of connections on fibered manifolds

Alexandr Vondra (1994)

Archivum Mathematicum

The (infinitesimal) symmetries of first and second-order partial differential equations represented by connections on fibered manifolds are studied within the framework of certain “strong horizontal“ structures closely related to the equations in question. The classification and global description of the symmetries is presented by means of some natural compatible structures, eġḃy vertical prolongations of connections.

Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional

Vincent Millot, Adriano Pisante (2010)

Journal of the European Mathematical Society

We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in H loc 1 ( 3 ; 3 ) satisfying a natural energy bound. Up to translations and rotations,such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under the action of the orthogonal group.

Symplectic critical surfaces in Kähler surfaces

Xiaoli Han, Jiayu Li (2010)

Journal of the European Mathematical Society

Let M be a Kähler surface and Σ be a closed symplectic surface which is smoothly immersed in M . Let α be the Kähler angle of Σ in M . We first deduce the Euler-Lagrange equation of the functional L = Σ 1 cos α d μ in the class of symplectic surfaces. It is cos 3 α H = ( J ( J cos α ) ) , where H is the mean curvature vector of Σ in M , J is the complex structure compatible with the Kähler form ω in M , which is an elliptic equation. We call such a surface a symplectic critical surface. We show that, if M is a Kähler-Einstein surface with nonnegative...

Symplectic Killing spinors

Svatopluk Krýsl (2012)

Commentationes Mathematicae Universitatis Carolinae

Let ( M , ω ) be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection . Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily...

Symplectic spinor valued forms and invariant operators acting between them

Svatopluk Krýsl (2006)

Archivum Mathematicum

Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.

Currently displaying 181 – 200 of 203