Displaying 41 – 60 of 1747

Showing per page

A geometric approach to on-diagonal heat kernel lower bounds on groups

Thierry Coulhon, Alexander Grigor'yan, Christophe Pittet (2001)

Annales de l’institut Fourier

We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product....

A logarithmic Sobolev form of the Li-Yau parabolic inequality.

Dominique Bakry, Michel Ledoux (2006)

Revista Matemática Iberoamericana

We present a finite dimensional version of the logarithmic Sobolev inequality for heat kernel measures of non-negatively curved diffusion operators that contains and improves upon the Li-Yau parabolic inequality. This new inequality is of interest already in Euclidean space for the standard Gaussian measure. The result may also be seen as an extended version of the semigroup commutation properties under curvature conditions. It may be applied to reach optimal Euclidean logarithmic Sobolev inequalities...

A mean-value lemma and applications

Alessandro Savo (2001)

Bulletin de la Société Mathématique de France

We control the gap between the mean value of a function on a submanifold (or a point), and its mean value on any tube around the submanifold (in fact, we give the exact value of the second derivative of the gap). We apply this formula to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator, and then to compute the first three terms of the asymptotic time-expansion of a heat diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension. We also write...

A microlocal F. and M. Riesz theorem with applications.

Raymondus G. M. Brummelhuis (1989)

Revista Matemática Iberoamericana

Consider, by way of example, the following F. and M. Riesz theorem for Rn: Let μ be a finite measure on Rn whose Fourier transform μ* is supported in a closed convex cone which is proper, that is, which contains no entire line. Then μ is absolutely continuous (cf. Stein and Weiss [SW]). Here, as in the sequel, absolutely continuous means with respect to Lebesque measure. In this theorem one can replace the condition on the support of μ* by a similar condition on the wave front set WF(μ) of μ, while...

Currently displaying 41 – 60 of 1747