Displaying 41 – 60 of 169

Showing per page

A logarithmic Sobolev form of the Li-Yau parabolic inequality.

Dominique Bakry, Michel Ledoux (2006)

Revista Matemática Iberoamericana

We present a finite dimensional version of the logarithmic Sobolev inequality for heat kernel measures of non-negatively curved diffusion operators that contains and improves upon the Li-Yau parabolic inequality. This new inequality is of interest already in Euclidean space for the standard Gaussian measure. The result may also be seen as an extended version of the semigroup commutation properties under curvature conditions. It may be applied to reach optimal Euclidean logarithmic Sobolev inequalities...

A mean-value lemma and applications

Alessandro Savo (2001)

Bulletin de la Société Mathématique de France

We control the gap between the mean value of a function on a submanifold (or a point), and its mean value on any tube around the submanifold (in fact, we give the exact value of the second derivative of the gap). We apply this formula to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator, and then to compute the first three terms of the asymptotic time-expansion of a heat diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension. We also write...

A microlocal F. and M. Riesz theorem with applications.

Raymondus G. M. Brummelhuis (1989)

Revista Matemática Iberoamericana

Consider, by way of example, the following F. and M. Riesz theorem for Rn: Let μ be a finite measure on Rn whose Fourier transform μ* is supported in a closed convex cone which is proper, that is, which contains no entire line. Then μ is absolutely continuous (cf. Stein and Weiss [SW]). Here, as in the sequel, absolutely continuous means with respect to Lebesque measure. In this theorem one can replace the condition on the support of μ* by a similar condition on the wave front set WF(μ) of μ, while...

A new infinite order formulation of variational sequences

Raffaele Vitolo (1998)

Archivum Mathematicum

The theory of variational bicomplexes is a natural geometrical setting for the calculus of variations on a fibred manifold. It is a well–established theory although not spread out very much among theoretical and mathematical physicists. Here, we present a new approach to infinite order variational bicomplexes based upon the finite order approach due to Krupka. In this approach the information related to the order of jets is lost, but we have a considerable simplification both in the exposition...

A nilpotent Lie algebra and eigenvalue estimates

Jacek Dziubański, Andrzej Hulanicki, Joe Jenkins (1995)

Colloquium Mathematicae

The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on n with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.

A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology.

J. I. Díaz, L. Tello (1999)

Collectanea Mathematica

We present some results on the mathematical treatment of a global two-dimensional diffusive climate model. The model is based on a long time averaged energy balance and leads to a nonlinear parabolic equation for the averaged surface temperature. The spatial domain is a compact two-dimensional Riemannian manifold without boundary simulating the Earth. We prove the existence of bounded weak solutions via a fixed point argument. Although, the uniqueness of solutions may fail, in general, we give a...

Currently displaying 41 – 60 of 169