A differentiable isomorphism between Wiener space and path group
This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula "à la Bott" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut- Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.
We propose to study a fully nonlinear version of the Yamabe problem on manifolds with boundary. The boundary condition for the conformal metric is the mean curvature. We establish some Liouville type theorems and Harnack type inequalities.
We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product....
We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator with potential given by the curvature of a closed curve.