Displaying 81 – 100 of 1747

Showing per page

A Riemann-Roch-Hirzebruch formula for traces of differential operators

Markus Engeli, Giovanni Felder (2008)

Annales scientifiques de l'École Normale Supérieure

Let D be a holomorphic differential operator acting on sections of a holomorphic vector bundle on an n -dimensional compact complex manifold. We prove a formula, conjectured by Feigin and Shoikhet, giving the Lefschetz number of D as the integral over the manifold of a differential form. The class of this differential form is obtained via formal differential geometry from the canonical generator of the Hochschild cohomology H H 2 n ( 𝒟 n , 𝒟 n * ) of the algebra of differential operators on a formal neighbourhood of a...

A spectral estimate for the Dirac operator on Riemannian flows

Nicolas Ginoux, Georges Habib (2010)

Open Mathematics

We give a new upper bound for the smallest eigenvalues of the Dirac operator on a Riemannian flow carrying transversal Killing spinors. We derive an estimate on both Sasakian and 3-dimensional manifolds, and partially classify those satisfying the limiting case. Finally, we compare our estimate with a lower bound in terms of a natural tensor depending on the eigenspinor.

A stochastic approach to relativistic diffusions

Ismaël Bailleul (2010)

Annales de l'I.H.P. Probabilités et statistiques

A new class of relativistic diffusions encompassing all the previously studied examples has recently been introduced in the article of C. Chevalier and F. Debbasch (J. Math. Phys. 49 (2008) 043303), both in a heuristic and analytic way. A stochastic approach of these processes is proposed here, in the general framework of lorentzian geometry. In considering the dynamics of the random motion in strongly causal spacetimes, we are able to give a simple definition of the one-particle distribution function...

A strong maximum principle for the Paneitz operator and a non-local flow for the Q -curvature

Matthew J. Gursky, Andrea Malchiodi (2015)

Journal of the European Mathematical Society

In this paper we consider Riemannian manifolds ( M n , g ) of dimension n 5 , with semi-positive Q -curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green’s function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive Q -curvature. Modifying the test function construction of Esposito-Robert, we show...

Abelian analytic torsion and symplectic volume

B.D.K. McLellan (2015)

Archivum Mathematicum

This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.

Currently displaying 81 – 100 of 1747