Displaying 41 – 60 of 310

Showing per page

Densité des orbites des trajectoires browniennes sous l’action de la transformation de Lévy

Jean Brossard, Christophe Leuridan (2012)

Annales de l'I.H.P. Probabilités et statistiques

Let Tbe a measurable transformation of a probability space ( E , , π ) , preserving the measureπ. Let X be a random variable with law π. Call K(⋅, ⋅) a regular version of the conditional law of X given T(X). Fix B . We first prove that ifB is reachable from π-almost every point for a Markov chain of kernel K, then the T-orbit of π-almost every point X visits B. We then apply this result to the Lévy transform, which transforms the Brownian motion W into the Brownian motion |W| − L, where L is the local time...

Density estimation for one-dimensional dynamical systems

Clémentine Prieur (2001)

ESAIM: Probability and Statistics

In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.

Density Estimation for One-Dimensional Dynamical Systems

Clémentine Prieur (2010)

ESAIM: Probability and Statistics

In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.

Density in small time for Lévy processes

Jean Picard (2010)

ESAIM: Probability and Statistics

The density of real-valued Lévy processes is studied in small time under the assumption that the process has many small jumps. We prove that the real line can be divided into three subsets on which the density is smaller and smaller: the set of points that the process can reach with a finite number of jumps (Δ-accessible points); the set of points that the process can reach with an infinite number of jumps (asymptotically Δ-accessible points); and the set of points that the process cannot...

Currently displaying 41 – 60 of 310