Poisson perturbations
Stein's method is used to prove approximations in total variation to the distributions of integer valued random variables by (possibly signed) compound Poisson measures. For sums of independent random variables, the results obtained are very explicit, and improve upon earlier work of Kruopis (1983) and Čekanavičius (1997); coupling methods are used to derive concrete expressions for the error bounds. An example is given to illustrate the potential for application to sums of dependent random variables. ...
Take a centered random walk and consider the sequence of its partial sums . Suppose is in the domain of normal attraction of an -stable law with . Assuming that is either right-exponential (i.e. for some and all ) or right-continuous (skip free), we prove that as , where depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.
La marche aléatoire (ou marche au hasard) est un objet fondamental de la théorie des probabilités. Un des problèmes les plus intéressants pour la marche aléatoire (ainsi que pour le mouvement brownien, son analogue dans un contexte continu) est de savoir comment elle recouvre des ensembles où se trouvent les points qui sont souvent (ou au contraire, rarement) visités, et combien il y a de tels points. Les travaux de Dembo, Peres, Rosen et Zeitouni permettent de résoudre plusieurs conjectures importantes...
Un théorème classique exprime qu’à partir d’un semi-groupe d’opérateurs sur l’espace des fonctions continues tendant vers 0 à l’infini, , , , continue, , on peut construire un processus markovien “standard”, à trajectoires réglées et continues à droite, quasi-continu à gauche ; l’espace des états est supposé localement compact à base dénombrable d’ouverts. Nous supposons ici que l’espace des états est seulement universellement mesurable dans un souslinien complètement régulier ; le processus...
Under some mild condition, a random walk in the plane is recurrent. In particular each trajectory is dense, and a natural question is how much time one needs to approach a given small neighbourhood of the origin. We address this question in the case of some extended dynamical systems similar to planar random walks, including ℤ2-extension of mixing subshifts of finite type. We define a pointwise recurrence rate and relate it to the dimension of the process, and establish a result of convergence in...
Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)−ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.
In this paper characterizations of graphs satisfying heat kernel estimates for a wide class of space–time scaling functions are given. The equivalence of the two-sided heat kernel estimate and the parabolic Harnack inequality is also shown via the equivalence of the upper (lower) heat kernel estimate to the parabolic mean value (and super mean value) inequality.