Displaying 121 – 140 of 307

Showing per page

Large scale behaviour of the spatial 𝛬 -Fleming–Viot process

N. Berestycki, A. M. Etheridge, A. Véber (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the spatial 𝛬 -Fleming–Viot process model (Electron. J. Probab.15(2010) 162–216) for frequencies of genetic types in a population living in d , in the special case in which there are just two types of individuals, labelled 0 and 1 . At time zero, everyone in a given half-space has type 1, whereas everyone in the complementary half-space has type 0 . We are concerned with patterns of frequencies of the two types at large space and time scales. We consider two cases, one in which the dynamics...

Limit theorems for stationary Markov processes with L2-spectral gap

Déborah Ferré, Loïc Hervé, James Ledoux (2012)

Annales de l'I.H.P. Probabilités et statistiques

Let ( X t , Y t ) t 𝕋 be a discrete or continuous-time Markov process with state space 𝕏 × d where 𝕏 is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. ( X t , Y t ) t 𝕋 is assumed to be a Markov additive process. In particular, this implies that the first component ( X t ) t 𝕋 is also a Markov process. Markov random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the process ( Y t ) t 𝕋 is shown to satisfy the...

Local limit theorems for Brownian additive functionals and penalisation of Brownian paths, IX

Bernard Roynette, Marc Yor (2010)

ESAIM: Probability and Statistics

We obtain a local limit theorem for the laws of a class of Brownian additive functionals and we apply this result to a penalisation problem. We study precisely the case of the additive functional: ( A t - : = 0 t 1 X s < 0 d s , t 0 ) . On the other hand, we describe Feynman-Kac type penalisation results for long Brownian bridges thus completing some similar previous study for standard Brownian motion (see [B. Roynette, P. Vallois and M. Yor, Studia Sci. Math. Hung.43 (2006) 171–246]).

Currently displaying 121 – 140 of 307