La vie et l'œuvre de W. Doeblin (1915-1940) d'après les archives parisiennes
Nous examinons la vie et l'œuvre de Wolfgang Doeblin à partir de sa correspondance et de ses papiers personnels déposés dans les différentes archives accessibles.
Nous examinons la vie et l'œuvre de Wolfgang Doeblin à partir de sa correspondance et de ses papiers personnels déposés dans les différentes archives accessibles.
We study the decay rate of large deviation probabilities of occupation times, up to time t, for the voter model η: ℤ2×[0, ∞)→{0, 1} with simple random walk transition kernel, starting from a Bernoulli product distribution with density ρ∈(0, 1). In [Probab. Theory Related Fields77 (1988) 401–413], Bramson, Cox and Griffeath showed that the decay rate order lies in [log(t), log2(t)]. In this paper, we establish the true decay rates depending on the level. We show that the decay rates are log2(t) when...
We consider the spatial -Fleming–Viot process model (Electron. J. Probab.15(2010) 162–216) for frequencies of genetic types in a population living in , in the special case in which there are just two types of individuals, labelled and . At time zero, everyone in a given half-space has type 1, whereas everyone in the complementary half-space has type . We are concerned with patterns of frequencies of the two types at large space and time scales. We consider two cases, one in which the dynamics...
Let be a discrete or continuous-time Markov process with state space where is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. is assumed to be a Markov additive process. In particular, this implies that the first component is also a Markov process. Markov random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the process is shown to satisfy the...
We obtain a local limit theorem for the laws of a class of Brownian additive functionals and we apply this result to a penalisation problem. We study precisely the case of the additive functional: . On the other hand, we describe Feynman-Kac type penalisation results for long Brownian bridges thus completing some similar previous study for standard Brownian motion (see [B. Roynette, P. Vallois and M. Yor, Studia Sci. Math. Hung.43 (2006) 171–246]).