Displaying 81 – 100 of 187

Showing per page

Marking (1, 2) points of the brownian web and applications

C. M. Newman, K. Ravishankar, E. Schertzer (2010)

Annales de l'I.H.P. Probabilités et statistiques

The brownian web (BW), which developed from the work of Arratia and then Tóth and Werner, is a random collection of paths (with specified starting points) in one plus one dimensional space–time that arises as the scaling limit of the discrete web (DW) of coalescing simple random walks. Two recently introduced extensions of the BW, the brownian net (BN) constructed by Sun and Swart, and the dynamical brownian web (DyBW) proposed by Howitt and Warren, are (or should be) scaling limits of corresponding...

Multiparameter pointwise ergodic theorems for Markov operators on L∞.

Ryotaro Sato (1994)

Publicacions Matemàtiques

Let P1, ..., Pd be commuting Markov operators on L∞(X,F,μ), where (X,F,μ) is a probability measure space. Assuming that each Pi is either conservative or invertible, we prove that for every f in Lp(X,F,μ) with 1 ≤ p < ∞ the averagesAnf = (n + 1)-d Σ0≤ni≤n P1n1 P2n2 ... Pdnd f (n ≥ 0)converge almost everywhere if and only if there exists an invariant and equivalent finite measure λ for which the Radon-Nikodym derivative v = dλ/dμ is in the dual space Lp'(X,F,μ). Next we study the case in...

Nash Equilibria in a class of Markov stopping games

Rolando Cavazos-Cadena, Daniel Hernández-Hernández (2012)

Kybernetika

This work concerns a class of discrete-time, zero-sum games with two players and Markov transitions on a denumerable space. At each decision time player II can stop the system paying a terminal reward to player I and, if the system is no halted, player I selects an action to drive the system and receives a running reward from player II. Measuring the performance of a pair of decision strategies by the total expected discounted reward, under standard continuity-compactness conditions it is shown...

On analyticity of Ornstein-Uhlenbeck semigroups

Beniamin Goldys (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let ( R t be a transition semigroup of the Hilbert space-valued nonsymmetric Ornstein-Uhlenbeck process and let μ denote its Gaussian invariant measure. We show that the semigroup ( R t is analytic in L 2 μ if and only if its generator is variational. In particular, we show that the transition semigroup of a finite dimensional Ornstein-Uhlenbeck process is analytic if and only if the Wiener process is nondegenerate.

On dependence structure of copula-based Markov chains

Martial Longla (2014)

ESAIM: Probability and Statistics

We consider dependence coefficients for stationary Markov chains. We emphasize on some equivalencies for reversible Markov chains. We improve some known results and provide a necessary condition for Markov chains based on Archimedean copulas to be exponential ρ-mixing. We analyse the example of the Mardia and Frechet copula families using small sets.

On iterates of strong Feller operators on ordered phase spaces

Wojciech Bartoszek (2004)

Colloquium Mathematicae

Let (X,d) be a metric space where all closed balls are compact, with a fixed σ-finite Borel measure μ. Assume further that X is endowed with a linear order ⪯. Given a Markov (regular) operator P: L¹(μ) → L¹(μ) we discuss the asymptotic behaviour of the iterates Pⁿ. The paper deals with operators P which are Feller and such that the μ-absolutely continuous parts of the transition probabilities P ( x , · ) x X are continuous with respect to x. Under some concentration assumptions on the asymptotic transition probabilities...

On sequentially weakly Feller solutions to SPDE’s

Bohdan Maslowski, Jan Seidler (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A rather general class of stochastic evolution equations in Hilbert spaces whose transition semigroups are Feller with respect to the weak topology is found, and consequences for existence of invariant measures are discussed.

On smoothing properties of transition semigroups associated to a class of SDEs with jumps

Seiichiro Kusuoka, Carlo Marinelli (2014)

Annales de l'I.H.P. Probabilités et statistiques

We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in d driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process Y (i.e. Y = W T , where T is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process W ) and of an arbitrary Lévy process independent of Y , that the drift coefficient is continuous (but not...

Currently displaying 81 – 100 of 187