Levels at which every brownian excursion is exceptional
Let be the first exit time of iterated Brownian motion from a domain started at and let be its distribution. In this paper we establish the exact asymptotics of over bounded domains as an improvement of the results in DeBlassie (2004) [DeBlassie, Ann. Appl. Prob.14 (2004) 1529–1558] and Nane (2006) [Nane, Stochastic Processes Appl.116 (2006) 905–916], for where . Here λD is the first eigenvalue of the Dirichlet Laplacian in D, and ψ is the eigenfunction corresponding...
Brownian motions defined as linear transformations of two independent Brownian motions are studied, together with certain orthogonal decompositions of Brownian filtrations.
The paper presents a discussion on linear transformations of a Wiener process. The considered processes are collections of stochastic integrals of non-random functions w.r.t. Wiener process. We are interested in conditions under which the transformed process is a Wiener process, a Brownian bridge or an Ornstein –Uhlenbeck process.
We obtain a local limit theorem for the laws of a class of Brownian additive functionals and we apply this result to a penalisation problem. We study precisely the case of the additive functional: . On the other hand, we describe Feynman-Kac type penalisation results for long Brownian bridges thus completing some similar previous study for standard Brownian motion (see [B. Roynette, P. Vallois and M. Yor, Studia Sci. Math. Hung.43 (2006) 171–246]).
A general theory is developed for the projection of martingale related processes onto smaller filtrations, to which they are not even adapted. Martingales, supermartingales, and semimartingales retain their nature, but the case of local martingales is more delicate, as illustrated by an explicit case study for the inverse Bessel process. This has implications for the concept of No Free Lunch with Vanishing Risk, in Finance.
A general theory is developed for the projection of martingale related processes onto smaller filtrations, to which they are not even adapted. Martingales, supermartingales, and semimartingales retain their nature, but the case of local martingales is more delicate, as illustrated by an explicit case study for the inverse Bessel process. This has implications for the concept of No Free Lunch with Vanishing Risk, in Finance.
We consider a long-range version of self-avoiding walk in dimension d > 2(α ∧ 2), where d denotes dimension and α the power-law decay exponent of the coupling function. Under appropriate scaling we prove convergence to brownian motion for α ≥ 2, and to α-stable Lévy motion for α < 2. This complements results by Slade [J. Phys. A21 (1988) L417–L420], who proves convergence to brownian motion for nearest-neighbor self-avoiding walk in high dimension.