Remarques sur le processus d'Ornstein-Uhlenbeck en dimension infinie
Se estudia la representación de variables positivas en un movimiento browniano con deriva, mediante tiempos de espera minimales asociados a barreras. Se trata también la representación de procesos crecientes, discretos y continuos por la derecha.
We prove a stochastic formula for the Gaussian relative entropy in the spirit of Borell’s formula for the Laplace transform. As an application, we give simple proofs of a number of functional inequalities.
Brownian motion is the most studied of all stochastic processes; it is also the basis for stochastic analysis developed in the second half of the 20th century. The fine properties of the sample path of a Brownian motion have been carefully studied, starting with the fundamental work of Paul Lévy who also considered more general processes with independent increments and extended the Brownian motion results to this class. Lévy showed that a Brownian path in d (d ≥ 2) dimensions had zero Lebesgue measure;...