Eigenvalues of random wreath products.
We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton–Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.
We consider random dynamics on the edges of a uniform Cayley tree with vertices, in which edges are either flammable, fireproof, or burnt. Every flammable edge is replaced by a fireproof edge at unit rate, while fires start at smaller rate on each flammable edge, then propagate through the neighboring flammable edges and are only stopped at fireproof edges. A vertex is called fireproof when all its adjacent edges are fireproof. We show that as , the terminal density of fireproof vertices converges...
We consider an age-dependent branching particle system in ℝd, where the particles are subject to α-stable migration (0 < α ≤ 2), critical binary branching, and general (non-arithmetic) lifetimes distribution. The population starts off from a Poisson random field in ℝd with Lebesgue intensity. We prove functional central limit theorems and strong laws of large numbers under two rescalings: high particle density, and a space-time rescaling...
We encode the genealogy of a continuous-state branching process associated with a branching mechanism – or in short – using a stochastic flow of partitions. This encoding holds for all branching mechanisms and appears as a very tractable object to deal with asymptotic behaviours and convergences. In particular we study the so-called Eve property – the existence of an ancestor from which the entire population descends asymptotically – and give a necessary and sufficient condition on the for...