On the integrability of Banach space valued Walsh polynomials
We consider the autoregressive model on ℝd defined by the stochastic recursion Xn = AnXn−1 + Bn, where {(Bn, An)} are i.i.d. random variables valued in ℝd× ℝ+. The critical case, when , was studied by Babillot, Bougerol and Elie, who proved that there exists a unique invariant Radon measureν for the Markov chain {Xn}. In the present paper we prove that the weak limit of properly dilated measure ν exists and defines a homogeneous measure on ℝd ∖ {0}.
A new version of the maximum principle is presented. The classical Kantorovich-Rubinstein principle gives necessary conditions for the maxima of a linear functional acting on the space of Lipschitzian functions. The maximum value of this functional defines the Hutchinson metric on the space of probability measures. We show an analogous result for the Fortet-Mourier metric. This principle is then applied in the stability theory of Markov-Feller semigroups.
Under a well-known scaling, supercritical Galton–Watson processes Z converge to a non-degenerate non-negative random limit variable W. We are dealing with the left tail (i.e. close to the origin) asymptotics of its law. In the Böttcher case (i.e. if always at least two offspring are born), we describe the precise asymptotics exposing oscillations (Theorem 1). Under a reasonable additional assumption, the oscillations disappear (Corollary 2). Also in the Böttcher case, we improve a recent lower deviation...
Asymptotic properties of the kth largest values for semi-Pareto processes are investigated. Conditions for convergence in distribution of the kth largest values are given. The obtained limit laws are represented in terms of a compound Poisson distribution.
The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.
In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is notably...