Displaying 221 – 240 of 2837

Showing per page

Affine Dunkl processes of type A ˜ 1

François Chapon (2012)

Annales de l'I.H.P. Probabilités et statistiques

We introduce the analogue of Dunkl processes in the case of an affine root system of type A ˜ 1 . The construction of the affine Dunkl process is achieved by a skew-product decomposition by means of its radial part and a jump process on the affine Weyl group, where the radial part of the affine Dunkl process is given by a Gaussian process on the ultraspherical hypergroup [ 0 , 1 ] . We prove that the affine Dunkl process is a càdlàg Markov process as well as a local martingale, study its jumps, and give a martingale...

Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime

Nathanaël Enriquez, Christophe Sabot, Olivier Zindy (2009)

Bulletin de la Société Mathématique de France

We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height log t . In the quenched setting, we also sharply estimate the distribution of the walk at time t .

Almost sure asymptotic behaviour of the r -neighbourhood surface area of Brownian paths

Ondřej Honzl, Jan Rataj (2012)

Czechoslovak Mathematical Journal

We show that whenever the q -dimensional Minkowski content of a subset A d exists and is finite and positive, then the “S-content” defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in d , d 3 .

Almost-sure growth rate of generalized random Fibonacci sequences

Élise Janvresse, Benoît Rittaud, Thierry de la Rue (2010)

Annales de l'I.H.P. Probabilités et statistiques

We study the generalized random Fibonacci sequences defined by their first non-negative terms and for n≥1, Fn+2=λFn+1±Fn (linear case) and ̃Fn+2=|λ̃Fn+1±̃Fn| (non-linear case), where each ± sign is independent and either + with probability p or − with probability 1−p (0<p≤1). Our main result is that, when λ is of the form λk=2cos(π/k) for some integer k≥3, the exponential growth of Fn for 0<p≤1, and of ̃Fn for 1/k<p≤1, is almost surely positive and given by ∫0∞log x dνk, ρ(x),...

Alpha-stable branching and beta-coalescents.

Birkner, Matthias, Blath, Jochen, Capaldo, Marcella, Etheridge, Alison M., Möhle, Martin, Schweinsberg, Jason, Wakolbinger, Anton (2005)

Electronic Journal of Probability [electronic only]

Amenability of linear-activity automaton groups

Gideon Amir, Omer Angel, Bálint Virág (2013)

Journal of the European Mathematical Society

We prove that every linear-activity automaton group is amenable. The proof is based on showing that a random walk on a specially constructed degree 1 automaton group – the mother group – has asymptotic entropy 0. Our result answers an open question by Nekrashevych in the Kourovka notebook, and gives a partial answer to a question of Sidki.

An algebraic approach to Pólya processes

Nicolas Pouyanne (2008)

Annales de l'I.H.P. Probabilités et statistiques

Pólya processes are natural generalizations of Pólya–Eggenberger urn models. This article presents a new approach of their asymptotic behaviour via moments, based on the spectral decomposition of a suitable finite difference transition operator on polynomial functions. Especially, it provides new results for large processes (a Pólya process is called small when 1 is a simple eigenvalue of its replacement matrix and when any other eigenvalue has a real part ≤1/2; otherwise, it is called large).

An application of multivariate total positivity to peacocks

Antoine Marie Bogso (2014)

ESAIM: Probability and Statistics

We use multivariate total positivity theory to exhibit new families of peacocks. As the authors of [F. Hirsch, C. Profeta, B. Roynette and M. Yor, Peacocks and associated martingales vol. 3. Bocconi-Springer (2011)], our guiding example is the result of Carr−Ewald−Xiao [P. Carr, C.-O. Ewald and Y. Xiao, Finance Res. Lett. 5 (2008) 162–171]. We shall introduce the notion of strong conditional monotonicity. This concept is strictly more restrictive than the conditional monotonicity as defined in [F....

An Application of Skew Product Maps to Markov Chains

Zbigniew S. Kowalski (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

By using the skew product definition of a Markov chain we obtain the following results: (a) Every k-step Markov chain is a quasi-Markovian process. (b) Every piecewise linear map with a Markovian partition defines a Markov chain for every absolutely continuous invariant measure. (c) Satisfying the Chapman-Kolmogorov equation is not sufficient for a process to be quasi-Markovian.

Currently displaying 221 – 240 of 2837