Displaying 241 – 260 of 2837

Showing per page

An asymptotic expansion for the distribution of the supremum of a random walk

M. Sgibnev (2000)

Studia Mathematica

Let S n be a random walk drifting to -∞. We obtain an asymptotic expansion for the distribution of the supremum of S n which takes into account the influence of the roots of the equation 1 - e s x F ( d x ) = 0 , F being the underlying distribution. An estimate, of considerable generality, is given for the remainder term by means of submultiplicative weight functions. A similar problem for the stationary distribution of an oscillating random walk is also considered. The proofs rely on two general theorems for Laplace transforms....

An extension of a boundedness result for singular integral operators

Deniz Karlı (2016)

Colloquium Mathematicae

We study some operators originating from classical Littlewood-Paley theory. We consider their modification with respect to our discontinuous setup, where the underlying process is the product of a one-dimensional Brownian motion and a d-dimensional symmetric stable process. Two operators in focus are the G* and area functionals. Using the results obtained in our previous paper, we show that these operators are bounded on L p . Moreover, we generalize a classical multiplier theorem by weakening its...

An integral test for the transience of a brownian path with limited local time

Itai Benjamini, Nathanaël Berestycki (2011)

Annales de l'I.H.P. Probabilités et statistiques

We study a one-dimensional brownian motion conditioned on a self-repelling behaviour. Given a nondecreasing positive function f(t), t≥0, consider the measures μt obtained by conditioning a brownian path so that Ls≤f(s), for all s≤t, where Ls is the local time spent at the origin by time s. It is shown that the measures μt are tight, and that any weak limit of μt as t→∞ is transient provided that t−3/2f(t) is integrable. We conjecture that this condition is sharp and present a number of open problems....

Currently displaying 241 – 260 of 2837