Limites de quotients de fonctions harmoniques et espaces de Hardy associés à une marche aléatoire sur un groupe abélien
Using explicit representations of the Brownian motions on hyperbolic spaces, we show that their almost sure convergence and the central limit theorems for the radial components as time tends to infinity can be easily obtained. We also give a straightforward strategy to obtain explicit expressions for the limit distributions or Poisson kernels.
Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms of a function f ∈ L²(E,μ) have the property , where ℰ is the Dirichlet form relative to the fractional diffusion.
Let be a Ornstein–Uhlenbeck diffusion governed by a stationary and ergodic process . We establish that under the condition with the stationary distribution of the regime process , the diffusion is ergodic. We also consider conditions for the existence of moments for the invariant law of when is a Markov jump process having a finite number of states. Using results on random difference equations on one hand and the fact that conditionally to , is gaussian on the other hand, we give...
Let Y be a Ornstein–Uhlenbeck diffusion governed by a stationary and ergodic process X : dYt = a(Xt)Ytdt + σ(Xt)dWt,Y0 = y0. We establish that under the condition α = Eµ(a(X0)) < 0 with μ the stationary distribution of the regime process X, the diffusion Y is ergodic. We also consider conditions for the existence of moments for the invariant law of Y when X is a Markov jump process having a finite number of states. Using results on random difference equations on one hand and the fact that...
Brownian motions defined as linear transformations of two independent Brownian motions are studied, together with certain orthogonal decompositions of Brownian filtrations.
The paper presents a discussion on linear transformations of a Wiener process. The considered processes are collections of stochastic integrals of non-random functions w.r.t. Wiener process. We are interested in conditions under which the transformed process is a Wiener process, a Brownian bridge or an Ornstein –Uhlenbeck process.
By direct calculus we identify explicitly the lipschitzian norm of the solution of the Poisson equation in terms of various norms of g, where is a Sturm–Liouville operator or generator of a non-singular diffusion in an interval. This allows us to obtain the best constant in the L1-Poincaré inequality (a little stronger than the Cheeger isoperimetric inequality) and some sharp transportation–information inequalities and concentration inequalities for empirical means. We conclude with several illustrative...
We prove admissible convergence to the boundary of functions that are harmonic on a subset of a non-homogeneous tree equipped with a transition operator that satisfies uniform bounds suitable for transience. The approach is based on a discrete Green formula, suitable estimates for the Green and Poisson kernel and an analogue of the Lusin area function.
We study asymptotic behavior of Markov chain Monte Carlo (MCMC) procedures. Sometimes the performances of MCMC procedures are poor and there are great importance for the study of such behavior. In this paper we call degeneracy for a particular type of poor performances. We show some equivalent conditions for degeneracy. As an application, we consider the cumulative probit model. It is well known that the natural data augmentation (DA) procedure does not work well for this model and the so-called...