Displaying 101 – 120 of 144

Showing per page

Limiting behaviors of the Brownian motions on hyperbolic spaces

H. Matsumoto (2010)

Colloquium Mathematicae

Using explicit representations of the Brownian motions on hyperbolic spaces, we show that their almost sure convergence and the central limit theorems for the radial components as time tends to infinity can be easily obtained. We also give a straightforward strategy to obtain explicit expressions for the limit distributions or Poisson kernels.

Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces

Katarzyna Pietruska-Pałuba (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms | | f | | W σ , 2 of a function f ∈ L²(E,μ) have the property 1 / C ( f , f ) l i m i n f σ 1 ( 1 σ ) | | f | | W σ , 2 l i m s u p σ 1 ( 1 σ ) | | f | | W σ , 2 C ( f , f ) , where ℰ is the Dirichlet form relative to the fractional diffusion.

Linear diffusion with stationary switching regime

Xavier Guyon, Serge Iovleff, Jian-Feng Yao (2004)

ESAIM: Probability and Statistics

Let Y be a Ornstein–Uhlenbeck diffusion governed by a stationary and ergodic process X : d Y t = a ( X t ) Y t d t + σ ( X t ) d W t , Y 0 = y 0 . We establish that under the condition α = E μ ( a ( X 0 ) ) < 0 with μ the stationary distribution of the regime process X , the diffusion Y is ergodic. We also consider conditions for the existence of moments for the invariant law of Y when X is a Markov jump process having a finite number of states. Using results on random difference equations on one hand and the fact that conditionally to X , Y is gaussian on the other hand, we give...

Linear diffusion with stationary switching regime

Xavier Guyon, Serge Iovleff, Jian-Feng Yao (2010)

ESAIM: Probability and Statistics

Let Y be a Ornstein–Uhlenbeck diffusion governed by a stationary and ergodic process X : dYt = a(Xt)Ytdt + σ(Xt)dWt,Y0 = y0. We establish that under the condition α = Eµ(a(X0)) < 0 with μ the stationary distribution of the regime process X, the diffusion Y is ergodic. We also consider conditions for the existence of moments for the invariant law of Y when X is a Markov jump process having a finite number of states. Using results on random difference equations on one hand and the fact that...

Lipschitzian norm estimate of one-dimensional Poisson equations and applications

Hacene Djellout, Liming Wu (2011)

Annales de l'I.H.P. Probabilités et statistiques

By direct calculus we identify explicitly the lipschitzian norm of the solution of the Poisson equation in terms of various norms of g, where is a Sturm–Liouville operator or generator of a non-singular diffusion in an interval. This allows us to obtain the best constant in the L1-Poincaré inequality (a little stronger than the Cheeger isoperimetric inequality) and some sharp transportation–information inequalities and concentration inequalities for empirical means. We conclude with several illustrative...

Local admissible convergence of harmonic functions on non-homogeneous trees

Massimo A. Picardello (2010)

Colloquium Mathematicae

We prove admissible convergence to the boundary of functions that are harmonic on a subset of a non-homogeneous tree equipped with a transition operator that satisfies uniform bounds suitable for transience. The approach is based on a discrete Green formula, suitable estimates for the Green and Poisson kernel and an analogue of the Lusin area function.

Local degeneracy of Markov chain Monte Carlo methods

Kengo Kamatani (2014)

ESAIM: Probability and Statistics

We study asymptotic behavior of Markov chain Monte Carlo (MCMC) procedures. Sometimes the performances of MCMC procedures are poor and there are great importance for the study of such behavior. In this paper we call degeneracy for a particular type of poor performances. We show some equivalent conditions for degeneracy. As an application, we consider the cumulative probit model. It is well known that the natural data augmentation (DA) procedure does not work well for this model and the so-called...

Currently displaying 101 – 120 of 144