Displaying 101 – 120 of 249

Showing per page

The logarithmic Sobolev constant of some finite Markov chains

Guan-Yu Chen, Wai-Wai Liu, Laurent Saloff-Coste (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

The logarithmic Sobolev constant is always bounded above by half the spectral gap. It is natural to ask when this inequality is an equality. We consider this question in the context of reversible Markov chains on small finite state spaces. In particular, we prove that equality holds for simple random walk on the five cycle and we discuss assorted families of chains on three and four points.

The Markov property for generalized gaussian random fields

G. Kallianpur, V. Mandrekar (1974)

Annales de l'institut Fourier

We obtain necessary and sufficient conditions in order that a Gaussian process of many parameters (more generally, a generalized Gaussian random field in R n ) possess the Markov property relative to a class of open sets. The method adopted is the Hilbert space approach initiated by Cartier and Pitt. Applications are discussed.

The M/M/1 queue is Bernoulli

Michael Keane, Neil O'Connell (2008)

Colloquium Mathematicae

The classical output theorem for the M/M/1 queue, due to Burke (1956), states that the departure process from a stationary M/M/1 queue, in equilibrium, has the same law as the arrivals process, that is, it is a Poisson process. We show that the associated measure-preserving transformation is metrically isomorphic to a two-sided Bernoulli shift. We also discuss some extensions of Burke's theorem where it remains an open problem to determine if, or under what conditions, the analogue of this result...

The Nagaev-Guivarc’h method via the Keller-Liverani theorem

Loïc Hervé, Françoise Pène (2010)

Bulletin de la Société Mathématique de France

The Nagaev-Guivarc’h method, via the perturbation operator theorem of Keller and Liverani, has been exploited in recent papers to establish limit theorems for unbounded functionals of strongly ergodic Markov chains. The main difficulty of this approach is to prove Taylor expansions for the dominating eigenvalue of the Fourier kernels. The paper outlines this method and extends it by stating a multidimensional local limit theorem, a one-dimensional Berry-Esseen theorem, a first-order Edgeworth expansion,...

Currently displaying 101 – 120 of 249