Displaying 81 – 100 of 249

Showing per page

The heat equation on manifolds as a gradient flow in the Wasserstein space

Matthias Erbar (2010)

Annales de l'I.H.P. Probabilités et statistiques

We study the gradient flow for the relative entropy functional on probability measures over a riemannian manifold. To this aim we present a notion of a riemannian structure on the Wasserstein space. If the Ricci curvature is bounded below we establish existence and contractivity of the gradient flow using a discrete approximation scheme. Furthermore we show that its trajectories coincide with solutions to the heat equation.

The infinite valley for a recurrent random walk in random environment

Nina Gantert, Yuval Peres, Zhan Shi (2010)

Annales de l'I.H.P. Probabilités et statistiques

We consider a one-dimensional recurrent random walk in random environment (RWRE). We show that the – suitably centered – empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a random walk in an infinite valley. The construction of the infinite valley goes back to Golosov, see Comm. Math. Phys.92 (1984) 491–506. As a consequence, we show weak convergence for both the maximal local time and the self-intersection local time of the...

The island model as a Markov dynamic system

Robert Schaefer, Aleksander Byrski, Maciej Smołka (2012)

International Journal of Applied Mathematics and Computer Science

Parallel multi-deme genetic algorithms are especially advantageous because they allow reducing the time of computations and can perform a much broader search than single-population ones. However, their formal analysis does not seem to have been studied exhaustively enough. In this paper we propose a mathematical framework describing a wide class of island-like strategies as a stationary Markov chain. Our approach uses extensively the modeling principles introduced by Vose, Rudolph and their collaborators....

The Kendall theorem and its application to the geometric ergodicity of Markov chains

Witold Bednorz (2013)

Applicationes Mathematicae

We give an improved quantitative version of the Kendall theorem. The Kendall theorem states that under mild conditions imposed on a probability distribution on the positive integers (i.e. a probability sequence) one can prove convergence of its renewal sequence. Due to the well-known property (the first entrance last exit decomposition) such results are of interest in the stability theory of time-homogeneous Markov chains. In particular this approach may be used to measure rates of convergence of...

Currently displaying 81 – 100 of 249