Previous Page 2

Displaying 21 – 37 of 37

Showing per page

On the asymptotic efficiency of the multisample location-scale rank tests and their adjustment for ties

František Rublík (2007)

Kybernetika

Explicit formulas for the non-centrality parameters of the limiting chi-square distribution of proposed multisample rank based test statistics, aimed at testing the hypothesis of the simultaneous equality of location and scale parameters of underlying populations, are obtained by means of a general assertion concerning the location-scale test statistics. The finite sample behaviour of the proposed tests is discussed and illustrated by simulation estimates of the rejection probabilities. A modification...

On the asymptotic properties of a simple estimate of the Mode

Christophe Abraham, Gérard Biau, Benoît Cadre (2004)

ESAIM: Probability and Statistics

We consider an estimate of the mode θ of a multivariate probability density f with support in d using a kernel estimate f n drawn from a sample X 1 , , X n . The estimate θ n is defined as any x in { X 1 , , X n } such that f n ( x ) = max i = 1 , , n f n ( X i ) . It is shown that θ n behaves asymptotically as any maximizer θ ^ n of f n . More precisely, we prove that for any sequence ( r n ) n 1 of positive real numbers such that r n and r n d log n / n 0 , one has r n θ n - θ ^ n 0 in probability. The asymptotic normality of θ n follows without further work.

On the asymptotic properties of a simple estimate of the Mode

Christophe Abraham, Gérard Biau, Benoît Cadre (2010)

ESAIM: Probability and Statistics

We consider an estimate of the mode θ of a multivariate probability density f with support in d using a kernel estimate fn drawn from a sample X1,...,Xn. The estimate θn is defined as any x in {X1,...,Xn} such that f n ( x ) = max i = 1 , , n f n ( X i ) . It is shown that θn behaves asymptotically as any maximizer θ ^ n of fn. More precisely, we prove that for any sequence ( r n ) n 1 of positive real numbers such that r n and r n d log n / n 0 , one has r n θ n - θ ^ n 0 in probability. The asymptotic normality of θn follows without further work.

On the consistency of sieve bootstrap prediction intervals for stationary time series

Roman Różański, Adam Zagdański (2004)

Discussiones Mathematicae Probability and Statistics

In the article, we consider construction of prediction intervals for stationary time series using Bühlmann's [8], [9] sieve bootstrapapproach. Basic theoretical properties concerning consistency are proved. We extend the results obtained earlier by Stine [21], Masarotto and Grigoletto [13] for an autoregressive time series of finite order to the rich class of linear and invertible stationary models. Finite sample performance of the constructed intervals is investigated by computer simulations.

On the optimal number of classes in the Pearson goodness-of-fit tests

Domingo Morales, Leandro Pardo, Igor Vajda (2005)

Kybernetika

An asymptotic local power of Pearson chi-squared tests is considered, based on convex mixtures of the null densities with fixed alternative densities when the mixtures tend to the null densities for sample sizes n . This local power is used to compare the tests with fixed partitions 𝒫 of the observation space of small partition sizes | 𝒫 | with the tests whose partitions 𝒫 = 𝒫 n depend on n and the partition sizes | 𝒫 n | tend to infinity for n . New conditions are presented under which it is asymptotically optimal...

On the Recursive Estimation of the Location and of the Size of the Mode of a Probability Density

Djeddour, Khédidja, Mokkadem, Abdelkader, Pelletier, Mariane (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 62G07, 62L20.Tsybakov [31] introduced the method of stochastic approximation to construct a recursive estimator of the location q of the mode of a probability density. The aim of this paper is to provide a companion algorithm to Tsybakov's algorithm, which allows to simultaneously recursively approximate the size m of the mode. We provide a precise study of the joint weak convergence rate of both estimators. Moreover, we introduce the averaging principle...

On the role played by the fixed bandwidth in the Bickel-Rosenblatt goodness-of-fit test.

Carlos Tenreiro (2005)

SORT

For the Bickel-Rosenblatt goodness-of-fit test with fixed bandwidth studied by Fan (1998) we derive its Bahadur exact slopes in a neighbourhood of a simple hypothesis f = f0 and we use them to get a better understanding on the role played by the smoothing parameter in the detection of departures from the null hypothesis. When f0 is an univariate normal distribution and we take for kernel the standard normal density function, we compute these slopes for a set of Edgeworth alternatives which give...

One Bootstrap suffices to generate sharp uniform bounds in functional estimation

Paul Deheuvels (2011)

Kybernetika

We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set 𝐈 , of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general...

Optimal model selection in density estimation

Matthieu Lerasle (2012)

Annales de l'I.H.P. Probabilités et statistiques

In order to calibrate a penalization procedure for model selection, the statistician has to choose a shape for the penalty and a leading constant. In this paper, we study, for the marginal density estimation problem, the resampling penalties as general estimators of the shape of an ideal penalty. We prove that the selected estimator satisfies sharp oracle inequalities without remainder terms under a few assumptions on the marginal density s and the collection of models. We also study the slope heuristic,...

Orthogonal series estimation of band-limited regression functions

Waldemar Popiński (2014)

Applicationes Mathematicae

The problem of nonparametric function fitting using the complete orthogonal system of Whittaker cardinal functions s k , k = 0,±1,..., for the observation model y j = f ( u j ) + η j , j = 1,...,n, is considered, where f ∈ L²(ℝ) ∩ BL(Ω) for Ω > 0 is a band-limited function, u j are independent random variables uniformly distributed in the observation interval [-T,T], η j are uncorrelated or correlated random variables with zero mean value and finite variance, independent of the observation points. Conditions for convergence...

Orthogonal series regression estimation under long-range dependent errors

Waldemar Popiński (2001)

Applicationes Mathematicae

This paper is concerned with general conditions for convergence rates of nonparametric orthogonal series estimators of the regression function. The estimators are obtained by the least squares method on the basis of an observation sample Y i = f ( X i ) + η i , i=1,...,n, where X i A d are independently chosen from a distribution with density ϱ ∈ L¹(A) and η i are zero mean stationary errors with long-range dependence. Convergence rates of the error n - 1 i = 1 n ( f ( X i ) - f ̂ N ( X i ) ) ² for the estimator f ̂ N ( x ) = k = 1 N c ̂ k e k ( x ) , constructed using an orthonormal system e k , k=1,2,...,...

Orthogonal series regression estimators for an irregularly spaced design

Waldemar Popiński (2000)

Applicationes Mathematicae

Nonparametric orthogonal series regression function estimation is investigated in the case of a fixed point design where the observation points are irregularly spaced in a finite interval [a,b]i ⊂ ℝ. Convergence rates for the integrated mean-square error and pointwise mean-square error are obtained in the case of estimators constructed using the Legendre polynomials and Haar functions for regression functions satisfying the Lipschitz condition.

Currently displaying 21 – 37 of 37

Previous Page 2