Estimation and tests of the discrete probability law based on the empirical generating function, (two dimensional case).
In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations...
Consider an autoregressive model with measurement error: we observe Zi = Xi + εi, where the unobserved Xi is a stationary solution of the autoregressive equation Xi = gθ0(Xi − 1) + ξi. The regression function gθ0 is known up to a finite dimensional parameter θ0 to be estimated. The distributions of ξ1 and X0 are unknown and gθ belongs to a large class of parametric regression functions. The distribution of ε0is completely known. We propose an estimation procedure with a new criterion computed as...
We consider the smoothness parameter of a function f ∈ L²(ℝ) in terms of Besov spaces , . The existing results on estimation of smoothness [K. Dziedziul, M. Kucharska and B. Wolnik, J. Nonparametric Statist. 23 (2011)] employ the Haar basis and are limited to the case 0 < s*(f) < 1/2. Using p-regular (p ≥ 1) spline wavelets with exponential decay we extend them to density functions with 0 < s*(f) < p+1/2. Applying the Franklin-Strömberg wavelet p = 1, we prove that the presented estimator...
Statistical inference procedures based on least absolute deviations involve estimates of a matrix which plays the role of a multivariate nuisance parameter. To estimate this matrix, we use kernel smoothing. We show consistency and obtain bounds on the rate of convergence.