The search session has expired. Please query the service again.
Displaying 361 –
380 of
499
The Bayesian inversion is a natural approach to the solution of inverse problems based on uncertain observed data. The result of such an inverse problem is the posterior distribution of unknown parameters. This paper deals with the numerical realization of the Bayesian inversion focusing on problems governed by computationally expensive forward models such as numerical solutions of partial differential equations. Samples from the posterior distribution are generated using the Markov chain Monte...
We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.
We introduce a modification of the Monge–Kantorovitch
problem of exponent 2 which accommodates non balanced initial
and final densities. The augmented Lagrangian numerical method
introduced in [6] is adapted to this “unbalanced”
problem. We illustrate the usability of this method on an
idealized error estimation problem in meteorology.
In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by...
In this article, we investigate numerical schemes for solving
a three component Cahn-Hilliard model. The space discretization is
performed by using
a Galerkin formulation and the finite element method.
Concerning the time discretization,
the main difficulty is to write a scheme ensuring,
at the discrete level, the decrease of the free energy
and thus the stability of the method.
We study three different schemes and prove
existence and convergence theorems. Theoretical results are
illustrated by...
We define approximation schemes for generalized backward stochastic differential systems, considered in the Markovian framework. More precisely, we propose a mixed approximation scheme for the following backward stochastic variational inequality:
where ∂φ is the subdifferential operator of a convex lower semicontinuous function φ and (X t)t∈[0;T] is the unique solution of a forward stochastic differential equation. We use an Euler type scheme for the system of decoupled forward-backward variational...
This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.
This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.
An algorithm for approximation of an unsteady fluid-structure interaction problem is proposed. The fluid is governed by the Navier-Stokes equations with boundary conditions on pressure, while for the structure a particular plate model is used. The algorithm is based on the modal decomposition and the Newmark Method for the structure and on the Arbitrary lagrangian Eulerian coordinates and the Finite Element Method for the fluid. In this paper, the continuity of the stresses at the interface was...
An algorithm for approximation of an unsteady fluid-structure interaction problem is
proposed. The fluid is governed by the Navier-Stokes equations with boundary conditions
on pressure, while for the structure a particular plate model is used.
The algorithm is based on the modal decomposition and the Newmark Method for the structure
and on the Arbitrary Lagrangian Eulerian coordinates and the Finite Element Method for
the fluid.
In this paper, the continuity of the stresses at the interface...
We propose a model for a medical device, called a stent, designed for
the treatment of cerebral aneurysms. The stent consists of a grid,
immersed in the blood flow and located at the inlet of the aneurysm.
It aims at promoting a clot within the aneurysm. The blood flow is
modelled by the incompressible Navier-Stokes equations and the stent
by a dissipative surface term. We propose a stabilized finite element
method for this model and we analyse its convergence in the case of
the Stokes...
We start from a mathematical model which describes the collective motion of bacteria taking into account the underlying biochemistry. This model was first introduced by Keller-Segel [13]. A new formulation of the system of partial differential equations is obtained by the introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor modelling). This new system of P.D.E. is approximated via a mixed finite element technique. The solution algorithm...
We start from a mathematical model which describes the collective motion
of bacteria taking into account the underlying biochemistry. This model
was first introduced by Keller-Segel [13].
A new formulation of the system of partial differential equations is
obtained by the introduction of a new variable (this new variable is similar
to the quasi-Fermi level in the framework of semiconductor modelling).
This new system of P.D.E. is approximated via a mixed finite element technique.
The solution...
This paper focuses on the mathematical modelling and the numerical approximation of the flow of two immiscible incompressible fluids. The surface tension effects are taken into account and mixed boundary conditions are used.
The weak formulation is introduced, discretized in time, and the finite element method is applied. The free surface motion is treated with the aid of the level set method. The numerical results are shown.
The aim of this work is to present numerical results of non-Newtonian fluid flow in a model of bypass. Different angle of a connection between narrowed channel and the bypass graft is considered. Several rheology viscosity models were used for the non-Newtonian fluid, namely the modified Cross model and the Carreau-Yasuda model. The results of non-Newtonian fluid flow are compared to the results of Newtonian fluid. The fundamental system of equations is the generalized system of Navier-Stokes equations...
We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe...
We propose here a model and a numerical scheme to compute the motion
of rigid particles interacting through the lubrication force. In the
case of a particle approaching a plane, we propose an algorithm and
prove its convergence towards the solutions to the gluey particle model
described in [B. Maury, ESAIM: Proceedings18 (2007)
133–142]. We propose a multi-particle version of
this gluey model which is based on the projection of the velocities
onto a set of admissible velocities. Then, we describe...
We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer...
Currently displaying 361 –
380 of
499