Displaying 141 – 160 of 497

Showing per page

Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system

Larisa Beilina (2013)

Open Mathematics

We rigorously derive energy estimates for the second order vector wave equation with gauge condition for the electric field with non-constant electric permittivity function. This equation is used in the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system. Our numerical experiments illustrate efficiency of the modified hybrid scheme in two and three space dimensions when the method is applied for generation of backscattering data in the reconstruction...

Energy-preserving Runge-Kutta methods

Elena Celledoni, Robert I. McLachlan, David I. McLaren, Brynjulf Owren, G. Reinout W. Quispel, William M. Wright (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical Hamiltonian systems.

Enrichissement des interpolations d’éléments finis en utilisant des méthodes sans maillage

Antonio Huerta, Sonia Fernández-Méndez, Pedro Díez (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Les méthodes sans maillage emploient une interpolation associée à un ensemble de particules : aucune information concernant la connectivité ne doit être fournie. Un des atouts de ces méthodes est que la discrétisation peut être enrichie d’une façon très simple, soit en augmentant le nombre de particules (analogue à la stratégie de raffinement h ), soit en augmentant l’ordre de consistance (analogue à la stratégie de raffinement p ). Néanmoins, le coût du calcul des fonctions d’interpolation est très...

Enrichissement des interpolations d'éléments finis en utilisant des méthodes sans maillage

Antonio Huerta, Sonia Fernández-Méndez, Pedro Díez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Les méthodes sans maillage emploient une interpolation associée à un ensemble de particules : aucune information concernant la connectivité ne doit être fournie. Un des atouts de ces méthodes est que la discrétisation peut être enrichie d'une façon très simple, soit en augmentant le nombre de particules (analogue à la stratégie de raffinement h), soit en augmentant l'ordre de consistance (analogue à la stratégie de raffinement p). Néanmoins, le coût du calcul des fonctions d'interpolation est...

Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form

Mohamed Saad Bouh Elemine Vall, Ahmed Ahmed, Abdelfattah Touzani, Abdelmoujib Benkirane (2018)

Mathematica Bohemica

We prove the existence of solutions to nonlinear parabolic problems of the following type: b ( u ) t + A ( u ) = f + div ( Θ ( x ; t ; u ) ) in Q , u ( x ; t ) = 0 on Ω × [ 0 ; T ] , b ( u ) ( t = 0 ) = b ( u 0 ) on Ω , where b : is a strictly increasing function of class 𝒞 1 , the term A ( u ) = - div ( a ( x , t , u , u ) ) is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, Θ : Ω × [ 0 ; T ] × is a Carathéodory, noncoercive function which satisfies the following condition: sup | s | k | Θ ( · , · , s ) | E ψ ( Q ) for all k > 0 , where ψ is the Musielak complementary function of Θ , and the second term f belongs to L 1 ( Q ) .

Epidemiology of Dengue Fever: A Model with Temporary Cross-Immunity and Possible Secondary Infection Shows Bifurcations and Chaotic Behaviour in Wide Parameter Regions

Maíra Aguiar, Bob Kooi, Nico Stollenwerk (2008)

Mathematical Modelling of Natural Phenomena

Basic models suitable to explain the epidemiology of dengue fever have previously shown the possibility of deterministically chaotic attractors, which might explain the observed fluctuations found in empiric outbreak data. However, the region of bifurcations and chaos require strong enhanced infectivity on secondary infection, motivated by experimental findings of antibody-dependent-enhancement. Including temporary cross-immunity in such models, which is common knowledge among field researchers...

Epsilon-inflation with contractive interval functions

Günter Mayer (1998)

Applications of Mathematics

For contractive interval functions [ g ] we show that [ g ] ( [ x ] ϵ k 0 ) ( [ x ] ϵ k 0 ) results from the iterative process [ x ] k + 1 : = [ g ] ( [ x ] ϵ k ) after finitely many iterations if one uses the epsilon-inflated vector [ x ] ϵ k as input for [ g ] instead of the original output vector [ x ] k . Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way.

Equation f ( p ( x ) ) = q ( f ( x ) ) for given real functions p , q

Oldřich Kopeček (2012)

Czechoslovak Mathematical Journal

We investigate functional equations f ( p ( x ) ) = q ( f ( x ) ) where p and q are given real functions defined on the set of all real numbers. For these investigations, we can use methods for constructions of homomorphisms of mono-unary algebras. Our considerations will be confined to functions p , q which are strictly increasing and continuous on . In this case, there is a simple characterization for the existence of a solution of the above equation. First, we give such a characterization. Further, we present a construction...

Currently displaying 141 – 160 of 497