Displaying 261 – 280 of 1088

Showing per page

Constructions of interpolation curves from given supporting elements. I

Josef Matušů, Josef Novák (1985)

Aplikace matematiky

This paper deals with the constructions of interpolation curves which pass through given supporting points (nodes) and touch supporting tangent vectors given at only some fo these points or, as the case may be, at all these points. The mathematical kernel of these constructions is based on Lienhard's interpolation method.

Constructions of interpolation curves from given supporting elements. II

Josef Matušů, Josef Novák (1986)

Aplikace matematiky

This paper deals with the constructions of interpolation curves which pass through given supporting points (nodes) and touch supporting tangent vectors given at only some of these points or, as the case may be, at all these points. The mathematical kernel of these constructions is based on the Lienhard's interpolation method. Formulae for the curvature of plane and space interpolation curves are derived.

Constructive quantization: approximation by empirical measures

Steffen Dereich, Michael Scheutzow, Reik Schottstedt (2013)

Annales de l'I.H.P. Probabilités et statistiques

In this article, we study the approximation of a probability measure μ on d by its empirical measure μ ^ N interpreted as a random quantization. As error criterion we consider an averaged p th moment Wasserstein metric. In the case where 2 p l t ; d , we establish fine upper and lower bounds for the error, ahigh resolution formula. Moreover, we provide a universal estimate based on moments, a Pierce type estimate. In particular, we show that quantization by empirical measures is of optimal order under weak assumptions....

Convergence acceleration by the E + p -algorithm

A. Fdil (1998)

Applicationes Mathematicae

A new algorithm which generalizes the E-algorithm is presented. It is called the E + p -algorithm. Some results on convergence acceleration for the E + p -algorithm are proved. Some applications are given.

Convergence Rates of the POD–Greedy Method

Bernard Haasdonk (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Iterative approximation algorithms are successfully applied in parametric approximation tasks. In particular, reduced basis methods make use of the so-called Greedy algorithm for approximating solution sets of parametrized partial differential equations. Recently, a priori convergence rate statements for this algorithm have been given (Buffa et al. 2009, Binev et al. 2010). The goal of the current study is the extension to time-dependent problems, which are typically approximated using the POD–Greedy...

Correct rounding of algebraic functions

Nicolas Brisebarre, Jean-Michel Muller (2007)

RAIRO - Theoretical Informatics and Applications

We explicit the link between the computer arithmetic problem of providing correctly rounded algebraic functions and some diophantine approximation issues. This allows to get bounds on the accuracy with which intermediate calculations must be performed to correctly round these functions.

Courbure discrète ponctuelle

Vincent Borrelli (2006/2007)

Séminaire de théorie spectrale et géométrie

Soient S une surface de l’espace euclidien 𝔼 3 et M un ensemble de triangles euclidiens formant une approximation linéaire par morceaux de S autour d’un point P S , la courbure discrète ponctuelle K d ( P ) au sommet P de M est, par définition, le quotient du défaut angulaire par la somme des aires des triangles ayant P comme sommet. Un problème naturel est d’estimer la différence entre cette courbure discrète K d ( S ) et la courbure lisse K ( P ) de S en P . Nous présentons dans cet article des résultats obtenus dans [4], [5],...

Cubic splines with minimal norm

Jiří Kobza (2002)

Applications of Mathematics

Natural cubic interpolatory splines are known to have a minimal L 2 -norm of its second derivative on the C 2 (or W 2 2 ) class of interpolants. We consider cubic splines which minimize some other norms (or functionals) on the class of interpolatory cubic splines only. The cases of classical cubic splines with defect one (interpolation of function values) and of Hermite C 1 splines (interpolation of function values and first derivatives) with spline knots different from the points of interpolation are discussed....

Curriculum vita of Prof. Vasil Atanasov Popov

Ivanov, Kamen, Petrushev, Pencho (2002)

Serdica Mathematical Journal

Our primary goal in this preamble is to highlight the best of Vasil Popov’s mathematical achievements and ideas. V. Popov showed his extraordinary talent for mathematics in his early papers in the (typically Bulgarian) area of approximation in the Hausdorff metric. His results in this area are very well presented in the monograph of his advisor Bl. Sendov, “Hausdorff Approximation”.

Currently displaying 261 – 280 of 1088