Convolution Quadrature and Discretized Operational Calculus. I.
We explicit the link between the computer arithmetic problem of providing correctly rounded algebraic functions and some diophantine approximation issues. This allows to get bounds on the accuracy with which intermediate calculations must be performed to correctly round these functions.
Soient une surface de l’espace euclidien et un ensemble de triangles euclidiens formant une approximation linéaire par morceaux de autour d’un point la courbure discrète ponctuelle au sommet de est, par définition, le quotient du défaut angulaire par la somme des aires des triangles ayant comme sommet. Un problème naturel est d’estimer la différence entre cette courbure discrète et la courbure lisse de en Nous présentons dans cet article des résultats obtenus dans [4], [5],...
Natural cubic interpolatory splines are known to have a minimal -norm of its second derivative on the (or class of interpolants. We consider cubic splines which minimize some other norms (or functionals) on the class of interpolatory cubic splines only. The cases of classical cubic splines with defect one (interpolation of function values) and of Hermite splines (interpolation of function values and first derivatives) with spline knots different from the points of interpolation are discussed....
Our primary goal in this preamble is to highlight the best of Vasil Popov’s mathematical achievements and ideas. V. Popov showed his extraordinary talent for mathematics in his early papers in the (typically Bulgarian) area of approximation in the Hausdorff metric. His results in this area are very well presented in the monograph of his advisor Bl. Sendov, “Hausdorff Approximation”.