Complete Spline Smoothing.
The general method of averaging for the superapproximation of an arbitrary partial derivative of a smooth function in a vertex of a simplicial triangulation of a bounded polytopic domain in for any is described and its complexity is analysed.
A formula for evaluation of the distribution of a linear combination of independent inverted gamma random variables by one-dimensional numerical integration is presented. The formula is direct application of the inversion formula given by Gil–Pelaez [gil-pelaez]. This method is applied to computation of the generalized -values used for exact significance testing and interval estimation of the parameter of interest in the Behrens–Fisher problem and for variance components in balanced mixed linear...
This paper deals with the constructions of interpolation curves which pass through given supporting points (nodes) and touch supporting tangent vectors given at only some fo these points or, as the case may be, at all these points. The mathematical kernel of these constructions is based on Lienhard's interpolation method.
This paper deals with the constructions of interpolation curves which pass through given supporting points (nodes) and touch supporting tangent vectors given at only some of these points or, as the case may be, at all these points. The mathematical kernel of these constructions is based on the Lienhard's interpolation method. Formulae for the curvature of plane and space interpolation curves are derived.
In this article, we study the approximation of a probability measure on by its empirical measure interpreted as a random quantization. As error criterion we consider an averaged th moment Wasserstein metric. In the case where , we establish fine upper and lower bounds for the error, ahigh resolution formula. Moreover, we provide a universal estimate based on moments, a Pierce type estimate. In particular, we show that quantization by empirical measures is of optimal order under weak assumptions....
A new algorithm which generalizes the E-algorithm is presented. It is called the -algorithm. Some results on convergence acceleration for the -algorithm are proved. Some applications are given.
Iterative approximation algorithms are successfully applied in parametric approximation tasks. In particular, reduced basis methods make use of the so-called Greedy algorithm for approximating solution sets of parametrized partial differential equations. Recently, a priori convergence rate statements for this algorithm have been given (Buffa et al. 2009, Binev et al. 2010). The goal of the current study is the extension to time-dependent problems, which are typically approximated using the POD–Greedy...