Displaying 341 – 360 of 420

Showing per page

Skipping transition conditions in a posteriori error estimates for finite element discretizations of parabolic equations

Stefano Berrone (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we derive a posteriori error estimates for the heat equation. The time discretization strategy is based on a θ-method and the mesh used for each time-slab is independent of the mesh used for the previous time-slab. The novelty of this paper is an upper bound for the error caused by the coarsening of the mesh used for computing the solution in the previous time-slab. The technique applied for deriving this upper bound is independent of the problem and can be generalized to other time...

Some new results in multiphase geometrical optics

Olof Runborg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In order to accommodate solutions with multiple phases, corresponding to crossing rays, we formulate geometrical optics for the scalar wave equation as a kinetic transport equation set in phase space. If the maximum number of phases is finite and known a priori we can recover the exact multiphase solution from an associated system of moment equations, closed by an assumption on the form of the density function in the kinetic equation. We consider two different closure assumptions based on delta...

Some remarks concerning stabilization techniques for convection--diffusion problems

Brandner, Marek, Knobloch, Petr (2019)

Programs and Algorithms of Numerical Mathematics

There are many methods and approaches to solving convection--diffusion problems. For those who want to solve such problems the situation is very confusing and it is very difficult to choose the right method. The aim of this short overview is to provide basic guidelines and to mention the common features of different methods. We place particular emphasis on the concept of linear and non-linear stabilization and its implementation within different approaches.

Some tracks in air pollution modelling and simulation.

Bruno Sportisse, Jaouad Boutahar, Edouard Debry, Denis Quélo, Karine Sartelet (2002)

RACSAM

In this article we discuss some issues related to Air Pollution modelling (as viewed by the authors): subgrid parametrization, multiphase modelling, reduction of high dimensional models and data assimilation. Numerical applications are given with POLAIR, a 3D numerical platform devoted to modelling of atmospheric trace species.

Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

Angela Handlovičová, Karol Mikula (2008)

Applications of Mathematics

We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

Currently displaying 341 – 360 of 420