Page 1

Displaying 1 – 8 of 8

Showing per page

P-adaptive Hermite methods for initial value problems∗

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

P-adaptive Hermite methods for initial value problems

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

P-adaptive Hermite methods for initial value problems∗

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

Parallel Schwarz Waveform Relaxation Algorithm for an N-dimensional semilinear heat equation

Minh-Binh Tran (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present in this paper a proof of well-posedness and convergence for the parallel Schwarz Waveform Relaxation Algorithm adapted to an N-dimensional semilinear heat equation. Since the equation we study is an evolution one, each subproblem at each step has its own local existence time, we then determine a common existence time for every problem in any subdomain at any step. We also introduce a new technique: Exponential Decay Error Estimates, to prove the convergence of the Schwarz Methods, with...

Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies

Max Duarte, Marc Massot, Stéphane Descombes (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we investigate the coupling between operator splitting techniques and a time parallelization scheme, the parareal algorithm, as a numerical strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive...

Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies

Max Duarte, Marc Massot, Stéphane Descombes (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we investigate the coupling between operator splitting techniques and a time parallelization scheme, the parareal algorithm, as a numerical strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive...

Periodic conservative solutions of the Camassa–Holm equation

Helge Holden, Xavier Raynaud (2008)

Annales de l’institut Fourier

We show that the periodic Camassa–Holm equation u t - u x x t + 3 u u x - 2 u x u x x - u u x x x = 0 possesses a global continuous semigroup of weak conservative solutions for initial data u | t = 0 in H per 1 . The result is obtained by introducing a coordinate transformation into Lagrangian coordinates. To characterize conservative solutions it is necessary to include the energy density given by the positive Radon measure μ with μ ac = ( u 2 + u x 2 ) d x . The total energy is preserved by the solution.

Perona-Malik equation: properties of explicit finite volume scheme

Angela Handlovičová (2007)

Kybernetika

The Perona–Malik nonlinear parabolic problem, which is widely used in image processing, is investigated in this paper from the numerical point of view. An explicit finite volume numerical scheme for this problem is presented and consistency property is proved.

Currently displaying 1 – 8 of 8

Page 1